当前位置:首页 >> 机械/仪表 >>

压力容器设计审核人员培训2011-1_图文

压力容器设计
(一)
济南石油化工设计院 电话:0531-88576125 ,13626411112 电子邮箱: huanghong1961@msn.com 二〇一一年三月

内容简介
GB150-1998《钢制压力容器》第5、6章

一、内压圆筒

二、内压球壳
三、外压圆筒 四、外压球壳

一、内压圆筒
1、圆筒

1)内压作用下圆筒内应力状况: 根据旋转薄壳无力矩理论(薄膜理 论),在内压作用下,圆筒受两向应力 作用,即环向应力,轴向应力,由这两 个薄膜应力来平衡外力(内压)这两个 应力的值可以通过静力平衡来求得: (1)圆筒在内压P作用下的轴向应力

D——圆筒的中间直径或称中径,mm; D=
Do ? Di 2

= Di +δ

D0——圆筒的外直径,mm;
Di——圆筒的内直径,mm;

δ——圆筒的计算厚度,mm;

1. 圆筒受压力pc的轴向作用:
P在圆筒轴向产生的总轴向力:

F1=π×D2×P/4 此轴向力由圆筒横截面的面积来承受,
圆筒横截面积:

fi=π×D×δ

由此产生的圆筒轴向应力:
?

σm=
当控制σh≤[σ]

4

D2 P

?D?

PD ? 4?

当控制σm≤[σ]t

? 时,

? 焊接接头系数

则:

时,则:

?1 ?

4?? ? ?
t

PD

此即按圆筒轴向应力计算的壁厚公式。

焊缝部位可能存在着夹渣、气孔、未焊透、 未熔合、裂纹等缺陷,同时由于焊接加热过程 中,对焊缝两侧的热影响产生许多不利因素, 如焊接热影响区被淬硬,塑性下降、焊接内应 力的产生等,都会使焊缝金属或母材的机械性

能降低。因此在设计时应将设计温度下圆筒材
料的许用应力[ζ] t 乘以一个焊接接头系数φ

(2)圆筒受压力P的径向作用(见图) P对圆筒径向作用,在半个圆筒投影 面上产生的合力(沿图中垂直方向):

F2=P×D×L
承受此垂直合力的圆筒纵截面面积: f2=2×δ×L

由此产生的圆筒环向应力: σt= 当控制σt≤[σ]t
P?D ?L 2? ? L ? P ?D 2?

?

时,

?2 ?

2?? ? ?
t

PD

将Di=D-δ代入公式,以计算压力Pc代替设 计压力P得出
Pc Di ?? t 2?? ? ? ? Pc

此式称为内压圆筒的计算公式(中径公式)。
(GB150-1998 第26页式5-1 )

(3)公式来由:

内压圆筒壁厚计算公式是从圆筒与

内压的静力平衡条件得出的。旋转薄壳
无力矩理论是其理论基础,第一强度理

论是其制定的理论依据。

由上述公式可以得出以下结论: a、圆筒体上周向(环向)应力ζt是经向 (轴向)应力ζm的两倍,而周向应力作用于纵 向截面 ,环向应力所作用与环纵向截面。 b、由于周向应力ζt是经向应力ζm的两倍, 由此可知,周向应力所作用的纵向截面是危险 截面。这里可以说明为什么在焊接接头分类里, 圆筒体的纵焊缝为A类焊接接头,环焊缝为B 类焊接接头;在筒体上开椭圆形人孔时使长轴 垂直与筒体轴线。 c、应力与D/δ成正比。

适用范围

Pc≤0.4[ζ]t φ (D0/Di≤1.5)

上述计算公式是以薄膜理论为基础导出
的,认为应力是沿圆筒壁厚均匀分布的,这

对薄壁容器是适合的。

但对于具较厚壁厚的圆筒,其环向应力并 不是均匀分布的。薄壁内径公式与实际应力存 在较大误差。对厚壁圆筒中的应力情况以由弹 性力学为基础推导得出的拉美公式较好地反映 了其分布。 厚壁和薄壁圆筒的概念:按照承压回转壳 体的无力矩理论是指壁厚和直径的比值;若壁 厚超过直径的1/10则被称为“厚壁筒”;反之, 则为“薄壁筒”。与这个指标相当的是“径 比”K,K=DO/Di,当K大于1.2时为“厚壁筒”, 小于或者等于1.2时为“薄壁筒”。

由拉美公式知:
σt=Pc(K2+1)/(K2-1)

厚壁筒中存在的三个方向的应力,其中只 有轴向应力是沿厚度均匀分布的。环向应力和 径向应力均是非均匀分布的,且内壁处为最大 值。筒壁三向应力中,周向应力最大,内壁处 达最大值,外壁处为最小值,内外壁处的应力 差值随K= D0 / Di增大而增大。当K=1.5时, 由薄壁公式按均匀分布假设计算的环向应力值 比按拉美公式计算的圆筒内壁处的最大环向应 力要偏低23%,存在较大的计算误差。

二、内压球壳

球形容器在均匀内压作用下,球形壳体 经向应力和周向应力相等。即
ζt =ζm=ζt =

PD 4?

式中P——设计压力,MPa; D——球壳的中间直径或称中径,mm; D= Di +δ Di——球壳的内直径,mm; δ——球壳的计算厚度,mm;

上述公式中,如将D=Di+δ代入并考虑了 焊接接头系数φ,如采用第一强度理论时,即 得出 P ( Di ? ? ) ≤[σ]tφ 4? 以Pc代替P所以可求出计算厚度δ

δ=

PcDi t 4[? ] ? ? Pc

上式即为GB150-1998第26页式5-5

适用范围:
Pc≤0.6[ζ]t φ 此时计算应力大于按弹性力学计算的厚 壁球壳的最大应力,且误差在10%左右。

三、外压圆筒 1.外压圆筒的稳定性 承受外压的圆筒,强度计算方法与受内 压时相同,其周向力应力值为轴向应力的两 倍,圆筒壁中产生的是压缩应力,而绝对值 大小一样。这种压应力如果达到材料的屈服 极限或强度极限时,将和承受内压圆筒一样 导致强度破坏。然而这种现象极为少见。通 常外压圆筒壁内的压缩应力还远小于材料的 屈服限时,筒体突然失去原来的形状被压瘪 或发生褶绉而失效(如图),在圆筒横断面 上呈现有规则的永久性波形,其波形数n可 为2、3、4…。

在外压作用下,筒体、球壳或封头突然
发生失去原来形状的现象称之为失稳。外

压容器稳定性是设计中主要考虑的问题。

外压圆筒失稳以前,筒壁中只是单纯的压 应力状态。在失稳时,伴随着突然变形,在

筒内产生了以弯曲应力为的复杂的附加应力,
这种变形与附加应力一直迅速发展到圆筒被

压瘪。由此可见,外压容器的失稳,实质上
是容器从一种平衡状态(形状及应力状态)

向另一种新的平衡状态的突变。

稳定安全系数m

长、短圆筒的临界压力公式,是按理想
状态(无初始不圆度)求得的。但实际上 的圆筒有几何尺寸及形状误差,还有焊接 结构形式等影响,这都会直接影响计算临 界压力的准确性,此外,生产过程中操作 压力的波动,使筒体实际外压力增高,并 可能超过计算的临界压力值。

为保证安全,必须使许用外压力低于临 界外压力,即

[P]=Pcr/m

式中稳定安全系数m=3(圆筒体)

2、圆筒的临界压力及其计算 (1)临界压力及影响因素 受外压作用的容器, 当外压力低于某一特 定的值时,壳体亦能发生变形,但当压力卸除 后壳体可恢复原来的形状,这时壳体变形属于 弹性变形范围。当外压力继续增加到某一特定 值,产生了不能恢复的永久变形,即失去了原 来的稳定性。容器失稳时的压力称临界压力, 以Pcr表示。容器在Pcr作用下容器壁内应力称 临界应力。

临界压力值受若干因素影响,如受容 器筒体几何尺寸及几何形状的影响,除此之外, 载荷的均匀和对称性、筒体材料及边界条件等 也有一定影响。 a. 影响因素δ/D 两个圆筒形外压容器, 当其他条件(材料、直径D、长度L)一定,而 厚度不同时,当L/D相同,δ/D大者临界压力高, 其原因是筒壁较厚抗弯曲的能力强;

b. 影响因素L/D 当δ/D相同,而长 度L不同,L/D小者临界压力高,其原因是筒 身较短圆筒的封头对筒壁起着一定支撑作用。

筒体的几何形状(如不圆度)误差会 降低筒壁临界压力,加速筒体的失稳。不圆 度定义为e=Dmax-Dmin,式中Dmax、Dmin 分别为筒体直径的最大值和最小值。

筒体材料的弹性模数E值大,抵抗变形能力 强,临界压力就高。由于各种钢材E值相差较 小,若选用高强度钢代替一般碳素钢制造外 压容器,并不能明显地提高筒体的临界压力, 却使容器成本提高,因而是不恰当的。要提 高容器的临界压力,即增加稳定性,只有从 几何尺寸上来考虑。

(2)长圆筒、短圆筒及刚性圆筒 承受外压的圆筒形壳体,按不同的几 何尺寸失稳时的不同形式(波形数不同), 将圆筒分为长圆筒、短圆筒及刚性圆筒等 三种。 长圆筒是指筒体的L/D值较大,筒体 两端边界的支撑作用可以忽略,筒体失稳 时Pcr仅与δ/D有关,而与L/D无关。长圆 筒失稳时波形数n为2。 短圆筒是指筒体两端边界的支撑作用 不可忽略,筒体失稳时Pcr与L/D及δ/D均 有关。短圆筒失稳时波形数n>2的整数。

刚性圆筒是指L/D较小,而δ/D较大, 筒体的刚性较好,破坏的原因是圆筒壁内的 压缩应力超过了材料的屈服限,并非是发生 了失稳。对刚性圆筒只考虑强度要求。 由上所述,圆筒的“长”和“短”是 指相对于直径来说的。长、短圆筒以及刚性 圆筒的临界压力是各不相同的,有其各自的 计算方法。

(3)圆筒体临界压力的计算
长圆筒临界压力 Pcr=2.2E(
?e
Do )3

E——圆筒材料在设计温度下的弹性模数 由上式可见,长圆筒临界压力仅与筒体δe/Do及E有 关。式仅限于弹性范围内使用,即失稳时应力应低于屈服 强度。

短圆筒临界压力
(

?e

Pcr=2.59E

Do L Do

) 2 .5

刚性圆筒由临界压力引起的临界应力为
Qcr= PcrD/2δe

外压短而厚的刚性圆筒,其破坏是由于 圆筒壁的压缩应力超过材料设计温度下的屈 服极限,不存在稳定性问题。强度校核公式 为 σ=
PD ≤[ζ]t (?n ? C )?

式中 φ——焊接接头系数,外压圆筒取 =1;

长、短及刚性圆筒都是承受横向均匀外 压力的情况。因容器均有封头,所以除受 横向外压力外,同时还受有轴向压力,但 轴向压缩对筒体失稳影响很小,工程上仅 按承受横向均匀外压计算临界压力(室外 高塔设计除外)。

(4)圆筒的临界长度 从前面已知,长短圆筒的区别是受端盖 支撑的影响。当δe /D相同时,短圆筒的临 界压力较称圆筒大,随着短圆筒长度的增 加,端盖对筒体支撑作用减弱,当短圆筒 的长度增大到某一值时,端盖对筒体的支 撑作用完全消失,这时短圆筒的临界压力 与长圆筒临界压力相等,该短圆筒的长度 称为临界长度,用Lcr表示。

2.2E(

)3 =2.59E Do L Do Do

?e

(

?e

) 2 .5



Lcr=1.17Do

Do δ e

临界长度是长、短圆筒 的分界线,也是 计算临界压力选择公式的的依据。当实际圆 筒计算长度L>Lcr属长圆筒,若L<Lcr则属短 圆筒。

外压圆筒的计算与δe /D0(D0为圆筒外

直径)有关。δe /D0≥0.04时,筒壁应力达
屈服极限前不可能被压瘪,此条件下任何

δe /D0值均按刚性圆筒计算。

(5)计算长度 圆筒的计算长度指筒体外部或内部两刚 性构件之间的最大距离,筒体外部焊接的角 钢加强圈,筒体内部挡板或塔盘均可视为刚 性构件;在两个刚性构件中,其中一个是凸 型封头时,取计算长度L=L’+h+hi/3(hi为凸 型封头曲面深度,h为直边高度)GB150第 28页 图6-1, 凸型封头刚性大对圆筒体有一定支撑作 用,可以提高临界压力。在较薄板制造的筒 体上焊接一定数量的加强圈,可使计算长度 L降低,提高临界压力。

3、外压圆筒的计算
(1)、解析法 (2)、图算法

(1)、解析法

基本原则:

对于长圆筒:L>Lcr ,

对于短圆筒:L?Lcr,

解析法:计算步骤
1、假设壁厚δn,计算筒体长度L,δe=δn-C; 2、计算Lcr, ,判断L是否大于Lcr; 对于长圆筒:L>Lcr,

对于短圆筒: L?Lcr,
3、比较P和[P],若P ? [P]且较接近,则假设的δn符合要求; 4、计算临界应力 ,工程上

(2)、图算法的计算步骤
1、假设壁厚δn,计算筒体长度L,δe=δn-C;

2、计算L/Do、Do/δe,查A,若L/Do >50,用L/Do=50查A; (GB150-1998图6-2~6-10)
3、由A值向上引垂线,查B值,若交不到,则说明圆筒已发生

弹性失稳,B值按下式计算 ? 2 EA B 3
计算 4、比较P和[P],若P ? [P]且较接近,则假设的δn符合要求

参数A

A—系数

A?
ε —应变

?cr
E



ζcr—临界应力

E —圆筒材料在设计温度下的弹性模数

4、加强圈设计
对于短圆筒:

由此可见,增加壁厚或减小圆筒的计算长度都 可以提高圆筒的许用外压,通过在筒体上设置加 强圈,可以有效地减小筒体的计算长度。 当外压一定时,通过设置加强圈也可以达到 减少筒体壁厚的目的。

加强圈尺寸 为了保证壳体与加强圈的稳定性,加强圈必 须有适当的尺寸,满足最小惯性矩要求:

式中I-加强圈和有效壳体所需的组合惯性矩,

Do-圆筒外径,mm;
Ls-加强圈间的间距,mm;

A=?-等效圆筒的周向临界应变;
As -加强圈的横截面积 mm2

加强圈设置

四、外压球壳
1、假设壁厚δn,令δe=δn-C,定出RO/δe;

2、计算A,
3、根据GB150-1998图6-3~6-10,查B值, 计算

4、比较P和[P],若P ? [P]且较接近,则假设的δn符合 要求

小结:压力容器设计基本要求
经济性
? ? ? ? 经济可靠的材料 经济的制造方法 低的操作和维护费用 长周期的安全运行

安全性 ? 足够的强度 ? 足够的刚度(或稳定性) ? 可靠的密封性能 ? 一定的使用寿命

安全、稳定、长寿命、满足使用要求、优质

原则:充分保证安全的前提下尽可能做到经济

?


相关文章:
压力容器设计审核人员培训2011-1_图文.ppt
压力容器设计审核人员培训2011-1 - 压力容器设计 (一) 济南石油化工设计
压力容器设计审核人员培训20113_图文.ppt
压力容器设计审核人员培训20113 - 压力容器设计 (三) 济南石油化工设计院
【新整理】压力容器设计审核人员培训.ppt_图文.ppt
【新整理】压力容器设计审核人员培训.ppt - 压力容器设计 (四) 内容简介
压力容器设计审核人员培训2019-1-PPT精选文档_图文.ppt
压力容器设计审核人员培训2019-1-PPT精选文档 - 压力容器设计 (一)
压力容器设计人员培训_图文.ppt
压力容器设计人员培训 - 压力容器设计人员培训 2010-11-30 上海 长宁 BV工业部 卢 设计审核师 杨 压力容器设计人员培训 ? 四个主题: .压力容器设计制造的...
压力容器设计审批人员培训201902-1-PPT精品文档_图文.ppt
压力容器设计审批人员培训201902-1-PPT精品文档 - 压力容器 设计审批
压力容器设计人员培训_2010_图文.ppt
长宁 2010-11- BV工业部 工业部 卢 设计审核师 杨 压力容器设计人员培训 ? ...压力容器设计基础知识 16 四、压力容器设计基础知识 1. 压力容器设计应遵循的...
压力容器设计审核人员培训_GB150.3-2011_压力容器_第3....ppt
压力容器 设计审批培训(三)二一二年二月 1 内容简介 GB150.3-2011《压力容器 第3部分:设计》 一、主要变化 二、范围三、内压圆筒 四、内压球壳五、外...
压力容器设计审核人员培训_压力容器设计计算和绘图软件....ppt
压力容器设计审核人员培训_压力容器设计计算和绘图软件-精品文档 - 压力容器 设
2011辽宁压力容器设计人员培训班 设计总论_图文.ppt
2011辽宁压力容器设计人员培训班 设计总论 - 2011年辽宁省D级压力容器 设计审核人员培训班 设计总论 中国石油辽阳石化公司 2011年4月 胡丽莉 讨论的主要内容 一...
2011辽宁压力容器设计人员培训班 选材要求_图文.pdf
2011辽宁压力容器设计人员培训班 选材要求 - 2011年辽宁省D级压力容器 设计审核人员培训班 选材要求 中国石油辽阳石化公司 2011年10月 胡丽莉 讨论的主要内容 一...
Cscbpv压力容器设计审核员培训班PPT 1压力容器用材料》....ppt
Cscbpv压力容器设计审核员培训班PPT 1压力容器用材料》秦晓钟_机械/仪表_工程科技_专业资料。Cscbpv 压力容器 设计 审核员 培训班PPT ...
2011年第一期压力容器设计审批员资格培训考核班通过人....doc
[关闭窗口] 2011 年第一期压力容器设计审批员资格培训考核班通过人员名单 新闻来源: 点击次数:1082 A 类通过人员名单: 序号 学号 姓名 1 2 3 4 5 6 7 8 ...
2011辽宁压力容器设计人员培训班 选材要求_图文.ppt
2011年辽宁省D级压力容器 2011年辽宁省D 年辽宁省 设计设计审核人员培训...选材原则 1、选材依据: 、选材依据: 容器的使用条件; 容器的使用条件; 材料的...
2011辽宁压力容器设计人员培训班 选材要求_图文.ppt
2011辽宁压力容器设计人员培训班 选材要求 - 2011年辽宁省D级压力容器 设计审核人员培训班 选材要求 中国石油辽阳石化公司 2011年4月 胡丽莉 讨论的主要内容 一...
压力容器审核人培训201610-4_图文.ppt
压力容器审核人培训201610-4 - 山东省D级压力容器 设计审批人员培训 (
压力容器审核人员培训教材第二部分_图文.ppt
压力容器 设计审批培训(二)济南石油化工设计院 黄泓 电话:0531-8857
Cscbpv,压力容器,设计,审核员,培训班PPT 02第二章概论1....ppt
Cscbpv,压力容器,设计,审核员,培训班PPT 02第二章概论1_机械/仪表_工程科技_专业资料。Cscbpv,压力容器,设计,审核员,培训班PPT ...
Cscbpv,压力容器,设计,审核员,培训班PPT 01第一章化工....ppt
Cscbpv,压力容器,设计,审核员,培训班PPT 01第章化工设备材料及选择1_机械/仪表_工程科技_专业资料。Cscbpv 压力容器 设计 审核员 培训班 PPT ...
压力容器设计审核人员培训教材 换热器部分.doc
压力容器设计审核人员培训教材 换热器部分_机械/仪表_工程科技_专业资料。压力容器...文档贡献者 BULUYIBING 贡献于2011-07-19 1 /2 相关文档推荐 ...
更多相关标签: