当前位置:首页 >> 化学 >>

亮剑 石墨烯的物理性质


二石墨烯其物理性质
1、石墨烯材料的结构
1-1、石墨烯的结构 石墨烯是一种从石墨材料中剥离出的碳原子紧密堆积成单层二维 蜂窝状晶格结构的炭材料。石墨烯在原子尺度上结构非常特殊,必须 用相对论量子物理学才能描绘。 碳原子中的四个绕核电子轨道分布在一个平面上。 碳分子是几个 碳原子在平面上的连接和展开,所以,碳分子与碳原子的薄度相似, 只是平面更大了一些而已。 碳原子或碳分子中的绕核电子只是在碳原 子核的径方向面上存在着和运动着,就像土星中的光环,土星的两极 方向是没有光环的, 即, 碳原子核两极的轴方向上是没有绕核电子的。 单层石墨由交替的单双键构成, 类似于有机中的多烯烃, 故得名。 其实这是一种习惯命名。烯是烃的一种,烃指的是碳氢化合物,而石 墨烯明显不含氢元素。但我们可以看到,苯,C6H6,在经典价键理论 中可以被命名为 1,3,5-环己三烯,两个苯环共边形成了萘(卫生 球),C10H8,三个苯环共边形成了蒽和菲,C14H10,分子中氢元素的含 量在不断下降,当这种形式无限扩展时,整个分子都由这种共边的苯 环构成,边缘的氢分子几乎可以忽略,也就形成了石墨烯的结构。换 句话说,石墨烯是由基本的烃的无限延伸的产物,所以也称之为烯。 理想的石墨烯结构如图 1A 所示,具有正六边形蜂窝晶形结构的碳 原子间以σ 键相连, 每一个碳原子由一个π 轨道及一个核外电子共同

组成了一个离域的大π 键。石墨就是由图 1A 所示的单层石墨烯堆积 形成的层状材料,层与层间考范德华作用力连接。 2004 年石墨烯在实验室被制备出来之前,相关研究认为石墨烯只 能 是 一 个 理 论 上 的 材 料 , 不 能 够 单 独 稳 定 地 存 在 , 但 2004 年 K.S.Novoselov 等通过机械剥离法将高定向热解石墨层层剥离最终得 到能稳定存在的单层石墨烯。对此,J.C.Meyer 等通过实验模型,并 利用透射电镜对石墨烯结构进行了进一步的研究, 揭示出了自由分散 的石墨烯具有带波纹状结构的单层结构,波纹状层状高度落差为 0.7-1.0nm 左右,而横截面长度为 8-10nm 左右,如图 1B 所示。由于 石墨烯的皱褶波纹结构大大降低了它的表面能,因而能够稳定存在。 2004 年前相关理论的缺欠, 就在没有考虑到石墨烯的褶皱波纹结构。 石墨烯是当今世界已发现的最薄的材料, 这种石墨晶体薄膜的厚度 只有 0.335 纳米 (一个原子的直径,10 的-10 次方) ,把 20 万片薄 膜叠加到一起,也只有一根头发丝那么厚。但这个厚度数据来源于石 墨的层间距,并不严格。因为单层石墨烯的厚度不仅受其褶皱波纹结 构的影响,还与测量时放置石墨烯的基体材料有关。例如,原子力显 微镜测量单层石墨烯的厚度为 0.6-1.0nm。

A)理想结构

B)实际结构 图 1 石墨烯的结构 1-2、氧化石墨烯的结构 石墨烯由于强大的范德华力具有疏水性和易团聚的特点, 限制了其 广泛应用。氧化石墨烯的出现正好解决了上述问题,氧化石墨烯 ( Graphene Oxide,GO) 是石墨烯的一种衍生物,是由氧化石墨发生 剥离而形成的单层或多层氧化石墨,具有典型的准二维空间结构,其 片层上含有很多含氧基团,具有较高的比表面能、良好的亲水性和机 械性能,在水和大多数极性有机溶剂中具有很好的分散稳定性。

一般认为,氧化石墨烯具有典型的准二维空间结构,其片层上有大 量的羟基和羧基酸性活性基团,其离子交换容量大(比黏土类矿物大 得多), 长链脂肪烃、过渡金属离子、亲水性分子和聚合物等易于通 过层间氢键、离子键和共价键等作用插入层间,形成层间化合物。干 燥样品的层间距约 0 .59nm ~0.67nm 之间,相对湿度 45 %、 75 %和 100 % 下达到平衡的 GO 层间距分别为 0.8 nm、0.9 nm 和 1 .15nm,比公认 的原始石墨层间距 0.34nm 大,显然有利于插层反应的进行。 通过元素 分析发现,化学式为 C8O2-X[OH]2X[0<X<2]。 CNMR 研究表明 , 它由未 被氧化的芳香区(sp2 碳原子)和氧化对晶格破坏形成的脂肪六元环区 (sp3 碳原子)组成,两者相对大小与氧化程度有关。 氧化石墨烯是石墨烯的氧化形式,如图 2 所示。在其碳原子晶体中 出现大量的如-OH、-COOH、环氧基、羰基等含氧功能团。氧化石墨烯 的结构可以看作是石墨烯片层结合含氧功能团形成的, 这些含氧功能 团主要为-COOH、-OH、环氧基,-COOH 一般位于石墨烯层的边缘。氧 化石墨烯一般可通过将石墨氧化随后超声分散而得到。 随着氧化程度 的增加,一般认为-COOH 含量增加,且环氧基与-OH 之比增加。

图 2 氧化石墨烯的结构

2 石墨烯的电学性能
2-1、石墨烯是目前已知导电性能最出色的材料。 电子在石墨烯片层内的传输过程中,受到的阻力和干扰很小,利用 其传输的平面半导体技术操作技术,石墨烯的迁移率可达到 2×105cm2/(V.s),约为硅中电子迁移率的 100 倍;石墨烯还表现出了 异常的量子 Hall 效应;Klein 隧穿效应:在室温下,载流子在石墨 烯中的传输显示出了微米尺度内弹道式的一流隧穿特性; 同时石墨烯 还是一种禁带宽度几乎为零的半金属/半导体材料, 具有半金属特性; 通过改变栅极电压的方法可以改变石墨烯的载流子类型: 电子/空穴; 石墨烯是纳米电路的理想材料,其电阻率为 10-6Ω *cm,比铜或银更 低,是目前已知材料中室温下具有最低电阻的材料;对任何气体完全 不渗透,具有很高的密封性能,可以维持很高的电流密度(比铜高一 百万倍) 。碳原子有四个价电子,每个碳原子贡献一个未成键的π 电

子,这些π 电子在与平面成垂直的方向上形成π 轨道。π 电子在晶体 中可自由移动,赋予石墨良好的导电性。如图 3。

图 3 用坐标表示的石墨烯晶体结构 2-2、石墨烯电学性能的讨论 (1) 石墨烯特殊电子结构对电子迁移率的影响 石墨烯是一种禁带宽度几乎为零的半金属/半导体材料, 具有 半金属特性。在二维六边形 Brillouin 角的六个角附近的低能 区域,其 E-K 关系是线性的(见图 4) ,从而形成了有效质量为 零的 Dirac-费米子,具有类似光子的特性。电子在片层内的传 输过程中,由于原子间作用力十分强,即使周围碳原子发生挤 撞,引入缺陷或外来原子,受到的阻力和干扰小,不容易发生 散射。且利用其传输的平面半导体操作技术,石墨烯的传导性 会得到加强。 石墨烯的高速电迁移率归因于它特殊的量子隧道系统。 Klein

隧道效应可以使相对论粒子有一定的概率穿越比自身能量高的 势垒。而在石墨烯中,Klein 隧道效应发挥到极致,石墨烯所 有的粒子都发生了 Klein 隧道效应,通过率达百分之百,这就 是石墨烯极高载流速率的原因。 (2) 电子迁移率不随温度变化 石墨烯在电子迁移率上另一个优异性质是它的迁移率大小几 乎不随温度的变化而变化。 电子在传递过程中受晶格振动的散 射作用,导致电子迁移率降低,而晶格振动的强度与温度成正 比,即温度越高,电子迁移率越低。然而石墨烯的晶格振动对 电子散射很少,几乎不受温度影响变化。 (3) 电子传输中的自冷系统 持续保持低温操作对于高效能的电极来说非常重要。 石墨烯 就有制冷的 Peltier(塞贝克)效应,也叫热电极效应。在室 温条件下,在金属触点该效应是很明显的。石墨烯设备中,该 作用超过了焦耳热和传输阻力,表现出了非典型的自冷机制。 (4) 载流子特性 上文提到石墨烯对任何气体具有完全的致密性 (不渗透性) , 因此它可以维持很高的载流子密度(比铜高一万倍) 。另外, 在电场的操作下,可以控制石墨烯的载流子浓度,所以其导电 性可控。通过改变栅极电压的方法,可以转变石墨烯的载流子 类型。电场的势垒可以用来控制电子运动的方向。 石墨烯每个单独的电荷载体都是一个传导通道, 并假设弹道

输运, 则有利于量子点的传导 G0=2E2/h (其中, E 是基本电荷, h 是普朗克常数) 。很多化学上潜在的不平衡(即源极-漏极偏 置)可以增加活性通道的数目和最终的总电导率的量化增量。

图 4 石墨烯的电子能带结构

3 光学性质
3-1、石墨烯的精细结构常数α 在凝聚态物理世界里有一些现象只由基本常数决定, 与其本身的物 理参数无关。石墨烯的透光率仅由精细结构常数α 决定,α =e2/hc≈ 1/137。单层石墨烯在白光下仅吸收π α =2.3%部分的入射白光。每增 加一层石墨烯, 对光的吸收增加 2.3%, 同时吸收与入射光波长无关, 这是由于石墨烯在迪拉克电子和空穴能带相交电子结构的结果。 该性 质可用于辨别石墨烯的层数, 也可用于制造生产各种波段的激光振荡 器。

图 5 入射白光在空气、单层石墨烯、双层石墨烯时的透光率 3-2、烯的非线性光学特性 可饱和吸收体的光学非线性特性与光载流子密度直接相关。 使用描 述二维量子陷的简单二能级可饱和吸收体模型来描述石墨烯的非线 性可饱和吸收:

其中α *(N)为吸收系数,α

*

S 为可饱和吸收系数,α SN 为非饱和

*

吸收系数,N 为光感生电子空穴密度,Ns 为可饱和强度,其大小为吸 收降至初始值一半时 N 的大小。 在强度为 I 的连续光或是脉冲光激发 下,光载流子密度可以简单的由下式描述:

其中 t 为载流子复合时间,ω 为光频率。式子说明达到同样的载流 子强度 N 时,载流子复合时间越长需要获得的连续光强越小。

图 6 石墨烯薄膜的总吸收与层数的关系 痛过使用能量为 0.75eV-0.85eV 的声子, 得到上示的石墨烯薄膜 的吸收与石墨烯层数的关系。该结果与比尔-朗伯定律相一致,即单 层石墨烯具有大小为π α 的固定吸收大小。

图 7 不通层数石墨烯薄膜的非线性吸收实验数据及拟合结果

图 7 为通过使用 1550nm 的激光得到的多层石墨烯的非线性可饱和 吸收特性。随着入射光强的增加,得到可饱和吸收清晰的变化。用公 式(2-2)代替公式(2-1)中的 N,得到可以用来拟合上述实验结果 的公式:

式中 Is 为可饱和强度,定义为在一个稳定状态中,使吸收率降 到未饱和一半时所需光强。当石墨烯层数从 3±1 变化至 10±1 时, 可饱和强度从 0.71MW/cm2 变化至 0.61MW/cm2。 与此同时, 由于石墨烯 层数增加而导致的散射增强,使得石墨烯非可饱和损失的变大,这使 得调制深度从 66.5%减小到 6.2%,如图 4 所示。

图 8 调制深度与可饱和载流子密度与石墨烯层数的关系 石墨烯的可饱和强度要比单臂碳纳米管和半导体可饱和吸收镜的 调制深度高 2-3 倍。 原子层石墨烯之所以会具有相对大一些的调制深

度是因为其本身的非可饱和损失要小一些, 这是由石墨烯二维结构决 定的固有优点。由于金属催化剂和管束之间散射作用,单臂碳纳米管 的非可饱和损失比石墨烯要高些。 图 8 所示的为可饱和载流子密度与 石墨烯层数的关系,可以看出在调制深度基本一致的情况下, 9-11 层石墨烯的可饱和载流子密度是传统单臂碳纳米管的 3 倍, 说明石墨 烯具有产生低噪声激光脉冲的潜质。

4 热导性质
石墨烯具有极高导热系数 , 近年来被提倡用于散热等方面 , 在散热 片中嵌入石墨烯或数层石墨烯可使得其局部热点温度大幅下降。 美国 加州大学一项研究显示 , 石墨烯的导热性能优于碳纳米管。中国科 学院山西煤炭化学研究所高导热石墨烯/炭纤维柔性复合薄膜,其厚 度在 10~200 μ m 之间可控,室温面向热导率高达 977 W/m?K,拉伸 强度超过 15 MPa。普通碳纳米管的导热系数可达 3000W/mK 以上, 各 种金属中导热系数相对较高的有银、铜、金、铝, 而单层石墨烯的导 热系数可达 5300W/mK, 甚至有研究表明其导热系数高达 6600W/mK。 优异的导热性能使得石墨烯有望作为未来超大规模纳米集成电路的 散热材料 。与纯石墨烯相比, 还原剥离氧化石墨得到热导率相对较 低(0.14 ~ 2.87 W/mK)的石墨烯(RGOx)。其导热系数与氧化石墨被 氧化程度密切相关, 原因是 RGOx 薄片即使经过热还原处理后仍然具 有氧化性。导热率可能与其中残余的化学官能团、破坏的碳六元环等 缺陷有关化学结构被氧化导致晶格缺陷的产生, 阻止了热传导作用。

石墨烯的理论比表面积可达 2630m2/g, 室温热导率约为 5300 w/(m· k), 高于碳纳米管和金刚石,是室温下铜的热导率的 10 倍多。对于一些 电子设备,频率越高,热量也越高,如果导热性达不到要求,频率提 升就会受到限制,填充的信号也就有限。导热率高决定了石墨烯适合 于高频电路。

5 相关力学性质
石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比世界上 最好的钢铁还要高上 100 倍。 哥伦比亚大学的物理学家对石墨烯的机 械特性进行了全面的研究。在试验过程中,他们选取了一些直径在 10—20 微米的石墨烯微粒作为研究对象。研究人员先是将这些石墨 烯样品放在了一个表面被钻有小孔的晶体薄板上,这些孔的直径在 1 —1.5 微米之间。之后,他们用金刚石制成的探针对这些放置在小孔 上的石墨烯施加压力,以测试它们的承受能力。 研究人员发现,在石墨烯样品微粒开始碎裂前,它们每 100 纳米距 离上可承受的最大压力居然达到了大约 2.9 微牛。据科学家们测算, 这一结果相当于要施加 55 牛顿的压力才能使 1 米长的石墨烯断裂。 如果物理学家们能制取出厚度相当于普通食品塑料包装袋的 (厚度约 100 纳米) 石墨烯, 那么需要施加差不多两万牛的压力才能将其扯断。 换句话说,如果用石墨烯制成包装袋,那么它将能承受大约两吨重的 物品。 5-1、石墨烯的不平整性和稳定性

关于准二维晶体的存在,科学界一直存在争议。早在 1934 年, Peierls 就提出准二维晶体材料在室温环境下会迅速分解或拆解。根 据 Mermin-Wagner 理论, 长的波长起伏会使长程有序的二维晶体受到 破坏。另外,根据弹性理论,二维薄膜在有限温度(>0K)下表现出不 稳定性,尤其会发生弯曲现象。因此科学家们一直认为严格的二维晶 体结构由于热力学不稳定性而难以独立稳定地存在单层石墨烯的成 功制备[[i,so]震惊了物理界,使科学家们对“完美二维晶体结构无 法在非绝对零度下稳定存在”这一基本论述提了质疑。Novoselov 等 [i,so] 利用机械剥离法 (mechanicalcleavage) 首次成功获得了真正 意义上的二维石墨烯片,而且可在外界环境中稳定地存在,为二维体 系的实验研究提供了广阔空间。 然而, 石墨烯在自然状态下是否为完美的平面结构还函待进一步证 实, 诸多学者对此进行了研究.Meyer[si-sa]和 Ishigami 等将石墨烯 嵌入三维空间(附着在微型支架或置于 Si0:衬底上),通过透射电子 显微镜观察并辅以数值模拟,研究表明,石墨烯并不完全平整,产生 了面外起伏褶皱,如图 9(a)所示。Fasolino 等采用蒙特卡罗模拟方 法研究了石墨烯的平整度问题,发现由于热涨落,石墨烯中自发地存 在大约 8 nm 的波纹状褶皱,如图 9(b)所示。产生这些褶皱的原因 可能与碳原子在二维石墨烯中所处的环境有一定的关系, Carlsson 对此进行了讨论.。烯中的碳原子在薄膜上下没有近邻原子,碳原子 容易在法向方向失稳而没有恢复力.正是这些纳米级别的三维褶皱巧 妙地使二维石墨烯晶体结构稳定地存在。 褶皱的产生与碳碳键的柔性

也存在有一定的关系。理论上,碳碳键长为 0.142nm,实际自由状态 下,石墨烯薄膜中的碳碳键长介于 0.130-0.154 nm 分布。 另外,石墨烯的边界表现出不稳定性,边界的结构和形貌对石墨烯 的性质会产生重要影响。Shenoy 等基于有限元分析和原子模拟,研 究发现,扶手椅型和锯齿型石墨烯的边界均会产生压应力,边界压力 的存在会导致石墨烯薄膜边界产生翘曲现象, ,同时发现锯齿边的起 伏幅度大于扶手椅边的起伏幅度。Reddv 等通过能量最小化研究石墨 烯平衡态的构型发现, 初始为矩形的 4 条边在平衡态时也会发生弯曲 现象韩同伟等(ss-ss}基于 AIREBO 势函数利用分子动力学方法模拟 了自由态石墨烯的弛豫性能也发现边界会产生相似的翘曲现象, 同时 发现多层石墨烯的边界翘曲程度明显比单层石墨烯的。Gass 等采用 扫描透射电镜对无支撑石墨烯的原子晶格进行了实验观测并辅以数 值分析,究探究表明,无支撑石墨烯的边界会重组产生卷曲现象,形 成直径最小的纳米管。 石墨烯边界产生翘曲或卷曲的原因可能在于孤 立的石墨烯边缘存在大量的悬键,由于悬键的存在,使得石墨烯边缘 处的能量较高,从而致使其发生变形以减小边界处的能量。

图 9 石墨烯中的存在的褶皱现象

5-2、 石墨烯力学性能的温度相关性和应变率相关性 石墨烯极其优异的力学性能与碳原子之间的化学键和电子结构 有着紧密的联系,内全部由 a 键构成的石墨烯,所有碳原子被束缚在 同一个平面内,使其具有超高的强度、刚度和韧性以及独特的变形机 制。另一方面,根据统计热力学理论,温度的高低决定了碳原子热振 动的剧烈程度。因此温度的改变必然会引起石墨烯力学行为的变化。 科学家采用蒙特卡罗方法研究了石墨烯弹性性能和热力学特性的温 度相关性,模拟结果显示,石墨烯的泊松比随温度的升高而减小,最 后趋近于 0.1。当温度低于 900K 时,石墨烯的剪切模量和绝热杨氏 模量随温度的升高而增大,而高于 900K 时,剪切模量和绝热杨氏模 量随温度的升高而减小。韩同伟等利用分子动力学方法,研究了扶手 椅型和锯齿型石墨烯拉伸力学性能的温度相关性。研究表明,两种不 同手性石墨烯的杨氏模量、抗拉强度、拉伸极限应变均随温度的升高 而显著减小,如图 10 所示。系统温度越高,系统的总动能就越大, 从热力学观点来看,系统内部原子的热运动越激烈,故随着温度的升 高,原子更活跃,原子在其平衡位置产生振动的幅度越大。在外载作 用下,高温时原子之间的相互吸引力相对减小,原子更容易脱离固有 的平衡位置而失稳。 通过对石墨烯在不同温度下的原子变形构型研究 发现,温度对石墨烯的变形机制有一定的影响。在高温时缺陷除了在 边缘处形成外,有时还会形成于薄膜内部某处。而且,在高温时有时 会有几个缺陷同时存。温度愈高,造成缺陷的机会愈多,从而导致抗 拉强度和拉伸极限应变减小。

图 10 石墨烯力学性能随温度的变化趋势 宏观材料的强度随应变率的增大而提高,在纳米尺度下铜、镍等 金属纳米材料的力学性能也表现出明显的应变率敏感性。 不同材料的 应变率敏感性有所差异。 模拟锯齿型和扶手椅型石墨烯在不同应变率 下的拉伸力能实验结果发现, 石墨烯的力学性能表现出强烈的应变率 相关性。

图 11 石墨烯力学性能随应变率的变化趋势 参考文献: 1、 湖南工学大学学报第 30 卷第 3 期 “石墨烯的材料结构、 性质及 表征解析”

2、 3、 4、 5、

北京化工大学氧化石墨烯表面功能化修饰 薛迎辉“石墨烯电极材料结构设计及其在二次电池中的应用” 石墨烯的电学研究——电学性质机理及其电学应用 天津大学精密仪器与光电子工程学院王晓龙“石墨烯的非线性 光学特性及其在光纤激光器中的应用”

6、

韩同伟、贺鹏飞、骆英、张小燕“石墨烯力学性能研究进展”


相关文章:
亮剑 石墨烯的物理性质_图文.doc
亮剑 石墨烯的物理性质 - 二石墨烯其物理性质 1、石墨烯材料的结构 1-1、石
石墨烯的物理性质及应用研究_论文.pdf
石墨烯的物理性质及应用研究 - 第3 7卷第 6期 2Ol 7年1 2月 上饶师
石墨烯(graphene)中的几个基本物理问题_图文.pdf
石墨烯(graphene)中的几个基本物理问题 - 石墨烯(graphene)的几个基 本物理问题及研究进展 周光辉 湖南师范大学物理与信息科学学院 Electronic address: gh...
石墨烯与氧化石墨烯的基本结构与性质.doc
石墨烯与氧化石墨烯的基本结构与性质 - 石墨烯具有平面六边形点阵结构[如图 1(
石墨烯物理性质的研究进展_图文.pdf
石墨烯物理性质的研究进展 - 石星烯物理性质昀研究进展 聊城大学赵力涛王文军 [摘要]bk2004年曼彻斯特大学的安德烈?K?海-姆(AndreK-Geim)…首次制造出石墨烯以来...
石墨烯(graphene)声子结构及热学性质.pdf
湖南师范大学 硕士学位论文 石墨烯(graphene)声子结构及热学性质 姓名:李远谋 申请学位级别:硕士 专业:凝聚态物理 指导教师:周光辉 20081101 摘要 石墨烯(graphene)...
石墨烯光学性质.doc
石墨烯光学性质 - 石墨烯具有优异的光学和电学性能, 与硅基半导体工艺的兼容性, 独特的二维原子晶体材料, 优异的机械性能, 超高的热导率和载流子迁移率, 超带宽...
半导体所等在多层石墨烯物理性质研究方面取得新进展_图文.pdf
半导体所等在多层石墨烯物理性质研究方面取得新进展 - 粉体产品 行业资讯 石墨烯源自石墨,因极佳的导电性、导热性和坚固性 闻名。 全世界的科学家都认为石墨烯将...
石墨烯的电学性质的研究_图文.doc
石墨烯的电学性质的研究 - 山西师范大学本科毕业论文 石墨烯的电学研究 电学性质机理及其电学应用 石墨烯的电学性质 内容摘要 近几年来,有关以石墨烯为主的...
石墨烯.doc
3 2.2 石墨烯的物理性质3 三、石墨烯的制备方法及工艺流程3
石墨烯简介.doc
石墨烯简介摘要:在碳材料中,石墨烯具有特殊的单层窝蜂状结构,由于特殊的分子结构, 使得石墨烯具有优良的化学和物理性质,例如:超高的比表面积超高的比表面积 (2630...
石墨烯介绍.doc
石墨烯介绍 - 1 石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由
石墨烯的电学性质及其研究进展--第三组20130522.ppt
8 3、石墨烯的性质机械特性石墨烯是人类已知强度最高的物质,比钻石还坚 硬,强度比世界上最好的钢铁还要高上100倍。哥伦 比亚大学的物理学家对石墨烯的机械特性...
石墨烯.doc
石墨烯 - 标题的前 2-3 个字 1 石墨烯的特征,制备,性能和应用 摘要:石
石墨烯的表面性质及其分析测试技术_图文.pdf
石墨烯的表面性质及其分析测试技术 - Journal of Advances in Physical Chemistry 物理化学进展, 2016, 5(2), 48-57 Published ...
石墨烯.ppt
单层石墨烯只有一个原子的厚度,其独特的单原 子层结构赋予了它优异的物理化学性能: ? (1)石墨烯的强度是已知材料中最高的,达到了 130Gpa,是钢的 100 多倍 ...
石墨烯电子结构及光学性质研究1.pdf
石墨烯电子结构及光学性质研究1_物理_自然科学_专业资料。石墨烯电子结构及光学性质研究云南大学 硕士学位论文 石墨烯电子结构及光学性质研究 姓名:李妹明 申请学位级...
石墨烯性质-表面等离子体.doc
石墨烯性质-表面等离子体_物理_自然科学_专业资料。? 1 石墨烯电子能带结构所带来的性质 石墨烯是零带系半导体,其能带结构在 K 空间成对顶的双锥形,费米面在迪...
石墨烯性质与应用.doc
石墨烯性质与应用 - 石墨絮是绝缘体还是导体? 2007-03-18 09:11
石墨烯的性质、应用及合成.doc
石墨烯的性质、应用及合成摘要:自 2004 年 Geim 教授和 Novoselov 教授在实验...化学键的强度对于一个材料的物理和力学性能十分重要,如熔点、 相变的活化能、...
更多相关标签: