当前位置:首页 >> 数学 >>

人教版选修2-1第五章 空间向量及其应用解析高中数学教学设计试卷分析

重点列表: 重点 重点 1 重点 2 重点 3 重点 4 重点详解: 1.直线的方向向量与平面的法向量的确定 → ①直线的方向向量:l 是空间一直线,A,B 是直线 l 上任意两点,则称AB为直线 l 的方向向量,与 → 名称 空间向量坐标的基本运算 空间两直线的平行与垂直 直线和平面的平行与垂直 平面和平面的平行与垂直 重要指数 ★★★ ★★★★ ★★★★ ★★★★ AB平行的任意非零向量也是直线 l 的方向向量. ②平面的法向量可利用方程组求出:设 a,b 是平面 α 内两不共线向量,n 为平面 α 的法向量, 则求法向量的方程组为? ? ?n?a=0, ?n?b=0. ? 2.用向量证明空间中的平行关系 ①设直线 l1 和 l2 的方向向量分别为 v1 和 v2,则 l1∥l2(或 l1 与 l2 重合)?v1∥v2. ②设直线 l 的方向向量为 v,与平面 α 共面的两个不共线向量 v1 和 v2,则 l∥α 或 l?α ?存在两 个实数 x,y,使 v=xv1+yv2. ③设直线 l 的方向向量为 v,平面 α 的法向量为 u,则 l∥α 或 l?α ?v⊥u. ④设平面 α 和 β 的法向量分别为 u1,u2,则 α ∥β ?u1∥u2. 1. 用向量证明空间中的垂直关系 ①设直线 l1 和 l2 的方向向量分别为 v1 和 v2,则 l1⊥l2?v1⊥v2?v1?v2=0. ②设直线 l 的方向向量为 v,平面 α 的法向量为 u,则 l⊥α ?v∥u. ③设平面 α 和 β 的法向量分别为 u1 和 u2,则 α ⊥β ?u1⊥u2?u1?u2=0. 2.共线与垂直的坐标表示 设 a=(a1,a2,a3),b=(b1,b2,b3),则 a∥b?a=λ b?a1=λ b1,a2=λ b2,a3=λ b3(λ ∈R), a⊥b?a?b=0?a1b1+a2b2+a3b3=0(a,b 均为非零向量). 重点 1:空间向量坐标的基本运算 【要点解读】 1.空间向量的坐标表示及运算 (1)数量积的坐标运算 设 a=(a1,a2,a3),b=(b1,b2,b3), 则①a±b=(a1±b1,a2±b2,a3±b3); ②λ a=(λ a1,λ a2,λ a3); ③a?b=a1b1+a2b2+a3b3. (2)共线与垂直的坐标表示 设 a=(a1,a2,a3),b=(b1,b2,b3), 则 a∥b?a=λ b?a1=λ b1,a2=λ b2,a3=λ b3(λ ∈R), a⊥b?a?b=0?a1b1+a2b2+a3b3=0(a,b 均为非零向量). 【考向 1】平行垂直关系的应用 【例题】已知 a=(1,5,-1),b=(-2,3,5). (1)若(ka+b)∥(a-3b),求实数 k 的值; (2)若(ka+b)⊥(a-3b),求实数 k 的值. 【评析】利用向量平行的性质:a∥b(b≠0) ?a=λ b?x1=λ x2,y1=λ y2,z1= λ z2 可求解第(1)问的 k 值;利用向量垂直的性质:a⊥b?a?b=0?x1x2+y1y2+ z1z2=0 建立方程可求第(2)问的 k 值. 【考向 2】向量所成角的应用 【例题】已知空间三点 A(-2,0,2),B(-1,1,2),C(-3,0,4),设 a= → AB,b=→ AC. (1)若|c|=3 且 c∥→ BC,求 c; (2)求 a 和 b 的夹角的余弦值; (3)若 ka+b 与 ka-2b 互相垂直,求 k 的值. (3)由(2)知|a|= 2,|b|= 5,a?b=-1. ∴(ka+b)?(ka-2b)=k2a2-ka?b-2b2=2k2+k-10=0, 5 解得 k=2 或 k=- . 2 重点 2:空间两直线的平行与垂直 【要点解读】 证明直线与直线垂直,只需要证明两条直线的方向向量垂直,而直线与平面垂直,平面与平面垂直 可转化为直线与直线垂直证明. 要证明两线垂直,需转化为两线对应的向量垂直,进一步转化为证明两向量的数量积为零,这是证 明两线垂直的基本方法,线线垂直是证明线面垂直,面面垂直的基础. 【考向 1】平行垂直的判定 【例题】设 a,b 是不相交的两条直线 l1,l2 的方向向量,试判断下列各条件下两 条直线 l1,l2 的位置关系: 1 3? ? (1)a=(2,-1,3),b=?-1, ,- ?; 2 2? ? 5? ? (2)a=(5,0,-2),b=?1,3, ?; 2? ? (3)a=(-2,1,4),b=(3,2,-1). 【评析】先考察两个方向向量是否平行或者垂直,将空间几何问题代数化,用直线 的方向向量之间的计算代替传统的空间几何推理,这是空间向量的最基本的作用, 使用得当非常简便. 【考向 2】建立坐标系判定直线位置关系 【例题】如图所示,正方体 ABCD?A′B′C′D′的棱长为 1,E,F 分别是 BC,CD 上的点,且 BE=CF=a(0<a<1),则 D′E 与 B′F 的位置关系是( ) A.平行 C.相交 B.垂直 D.与 a 值有关 解:建立如图所示空间直角坐标系,则 D′(0,0,1),E(1-a,1,0),B′(1, 1,1),F(0,1-a,0), ∴D→ ′E=(1-a,1,-1),B→ ′F=(-1,-a,-1). → → ∴D′E?B′F=(1-a)?(-1)+1?(-a)+(-1)?(-1)=a-1-a+1= → → 0.∴D′E⊥B′F,即 D′E⊥B′F.故选 B. 重点 3:直线和平面的平行与垂直 【要点解读】 证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向 量与平面内的不共线的两个向量共面,然后说明直线在平面外即可.这样就把几何的证明问题转化 为了数量的计算问题. 【考向 1】判断平行垂直的关系 【例题】如图,在直三棱柱 ABC?A1B1C1 中,AC=3,BC=4,AB=

相关文章:
...空间向量及其应用解析高中数学教学设计试卷分析.doc
人教版选修2-1第五章 空间向量及其应用解析高中数学教学设计试卷分析 - 重点列
...微积分 Word版含解析高中数学教学设计试卷分析.doc
人教版选修2-2第五章 微积分 Word版含解析高中数学教学设计试卷分析 - 语
...数学(人教版选修2-1):第五章 空间向量及其应用 含解....doc
易学通-重难点一本过高二数学(人教版选修2-1):第五章 空间向量及其应用解析_数学_高中教育_教育专区。重点列表: 重点 重点 1 重点 2 重点 3 重点 4 ...
...空间向量及其应用解析高中数学教学设计试卷分析.doc
人教版选修2-1第五章 空间向量及其应用解析高中数学教学设计试卷分析 - 全册上
...空间向量及其应用解析高中数学教学设计试卷分析.doc
人教版选修2-1第五章 空间向量及其应用解析高中数学教学设计试卷分析 - 语文数
高中数学人教版选修2-1教学设计:§3.1 空间向量及其运....doc
高中数学人教版选修2-1教学设计:§3.1 空间向量及其运算(练习) - 副本_数学_高中教育_教育专区。高中数学人教版选修2-1教学设计 ...
高中数学人教版选修2-1教学设计:训练:空间向量法求解立....doc
高中数学人教版选修2-1教学设计:训练:空间向量法求解立体几何问题_数学_高中教育...《用空间向量法求解立体几何问题典例及解析》以多面体为载体,以空间向量为工具,...
人教版高中数学选修2-1 模块综合检测卷(附答案解析).doc
人教版高中数学选修2-1 模块综合检测卷(附答案解析...?MB ? MC ,根据向量共面定理,可知点 M 与点 A...z 轴 D C 建立空间直角坐标系, -4- A E B ...
高中数学人教版选修2-1教学设计:3.1.1空间向量及其加减....doc
高中数学人教版选修2-1教学设计:3.1.1空间向量及其...教学重点:两个向量的数量积的计算方法及其应用. ...??? 第五课时 3.1.4 空间向量的正交分解及其坐标...
【金版优课】高中数学人教版选修2-1课后训练:3-1-2 空....doc
【金版优课】高中数学人教版选修2-1课后训练:3-1-2 空间向量的数乘运算 Word版含解析 - 04 课后课时精练 一、选择题 1. 下列命题正确的有( ) ①空间向量...
高中数学人教版选修2-1课后训练:3-1-2 空间向量的数乘....doc
高中数学人教版选修2-1课后训练:3-1-2 空间向量的数乘运算 含解析 - 04 课后课时精练 一、选择题 1. 下列命题正确的有( ) ①空间向量就是空间中一条有向...
高中数学人教版选修2-1教学课件:空间向量及其运算(三)....ppt
高中数学人教版选修2-1教学课件:空间向量及其运算(三)共线与共面分析_数学_高中教育_教育专区。高中数学人教版选修2-1教学课件 空间向量及其运算(三)共线与共面...
高中数学《空间向量及其运算》公开课优秀教学设计.doc
高中数学空间向量及其运算》公开课优秀教学设计 - 课题:空间向量及其线性运算(人教 A 版 3.1.1+3.1.2 部分内容) ? 教学内容解析: 本节课的教学内容选自《...
...数学(人教版选修2-1):第五章 空间向量及其应用 含解....doc
易学通-重难点一本过高二数学(人教版选修2-1):第五章 空间向量及其应用解析_数学_高中教育_教育专区。重点列表: 重点 重点 1 重点 2 重点 3 重点 4 ...
...2017学年高中数学人教版选修2-1课件:314 空间向量的....ppt
2016-2017学年高中数学人教版选修2-1课件:314 空间向量的正交分解及其坐标表示概要1讲解 - 3.1.4 空间向量的正交分解及其坐标表示 空间向量基本定理 [提出问题] ...
高中数学人教版选修2-1教学课件:复习空间向量(一)_图文.ppt
高中数学人教版选修2-1教学课件:复习空间向量(一)_数学_高中教育_教育专区。高中数学人教版选修2-1教学课件 复习空间向量(一) 复习空间向量(一) 一、空间向量的...
【三维设计】2016-2017学年人教版高中数学选修2-1课时....doc
【三维设计】2016-2017学年人教版高中数学选修2-1课时跟踪检测十七 空间向量的正交分解及其坐标表示解析 - 课时跟踪检测(十七) 空间向量的正交分解及其坐标表示 学业...
...高中数学选修2-1课时跟踪检测(十四) 空间向量及其加....doc
人教版高中数学选修2-1课时跟踪检测(十四) 空间向量及其加减运算 含解析_数学_高中教育_教育专区。课时跟踪检测(十四) 层级一 学业水平达标 空间向量及其加减运算 ...
人教版高中数学选修2-1课时跟踪检测(二十) 空间向量与....doc
人教版高中数学选修2-1课时跟踪检测(二十) 空间向量与空间角、距离 含解析_数学_高中教育_教育专区。课时跟踪检测(二十) 层级一 学业水平达标 空间向量与空间角...
人教版高中数学选修2-1课时跟踪检测(二十) 空间向量与....doc
人教版高中数学选修2-1课时跟踪检测(二十) 空间向量与空间角、距离 含解析_数学_高中教育_教育专区。课时跟踪检测(二十) 层级一 学业水平达标 空间向量与空间角...
更多相关标签: