当前位置:首页 >> 化学 >>

有机化学官能团相互转化


5-f

C=C-X C=C-OR C=C-SR

C=O
H3O+ H+ OCH3 +OCH3 H2O CH3O OH - CH3OH O

H3O+

OCH3 Hg2+ CH3CN (aq) SCH3

O

Hg2+ / CH3CN (aq)

tpye:
O

OR enol ether X SR thioenol ether NR Cl enamine vinyl chloride
OH R OR R

reactivity: OR >> OR OR >> OR SR >>
OH O H R

SR SR SR
O H

use:
R

O OR H

5-g

C(OR)2

C=O
preparation: acid catalyst TsOH CSA (camphorsulfonic acid) Amberlite resin
OH OH O CH3OH acid cat HOCH2CH2OH acid cat O O O CH3O OCH3

a very common protecting group, deprotect back to ketone
OR OR SR SR O O S S H C OEt OEt OEt

Type: H OR R OR acetal

R R

OR OR

H R

OR OH

R R

OR OH hemiketal

H3O+ / solv (aq) Hg2+ / H3O+ H3O+ / solv (aq)

OR OR

H3O+ / solv (aq) acid catalyst

ketal

hemiacetal

O S

O S

H3O+ CH3CN Hg2+ H 3O + O O R C H

unstable: only in aqueous acid stable in: basic solution: LDA, NaOMe RED: LiAlH4, NaBH4 organoMetal: RMgX, RLi

Hg2+ / H3O+

RMgX /

H3O+

H

OEt C OEt OEt

RMgX

via:

OEt H C OEt

RMgX

R

C H

OEt OEt

O R C H

5-h C-OH
1st alcohol

C=O
O R C H i. PCC ii. PDC iii. Collins reagent CrO3 - 2 Py iv. N-oxide v. DMSO / DCC vi. DMSO / HCl vii. DMSO / NHCO3 / NaI viii. Dess-Martin Reagent O
OCH3

THL, 1979, 5, 399. OH PDC 92 %
OCH3

O

CHO

H11C5

PDC CH2OH 70 %
OCH3

H11C5

CHO

AcO OAc I OAc O O

N+ O

RCH2OH

N O+

O R C H H O PhCH2OH
+

Pfitzner-Moffatt oxidation JOC, 1985, 50, 1332.

N OH

CH2Cl2, rt, 30 min JACS, 1991, 113, 7277. Ph O

S S O

S OH DMSO S DCC Can. J. Chem, 1978, 56, 1268. O O Ph

DMSO HCl

PhCHO

SynLett, 2002, 2041. H PhC H O S CH3 CH3

via: PhCH2

DMSO

Br

O

DMSO

NaHCO3 / NaI H 60 %

Synth. Commun., 1986, 16, 1343.

O 2nd alcohol R C R

TH, 1975, 2647. i. PCC TH, 1978, 2771. ii. PDC iii. Jones reagent (Na2Cr2O7-H2SO4 / acetone) iv. Moffatt oxidation (DMSO / Ac2O) v. Swern oxidation vi. DDQ / dioxane JOC, 1997, 62, 5246. vii. MnO2 / CHCl3 viii. Oppenauer zoidation Al(OiPr)3, acetone ix. K2Cr2O7 (s), rt solvent free THL, 2002, 43, 8843.

OH

DMSO Ac2O

O

+ Me2S + HOAc

O

O C CH3 O

O O C C OH H3C S CH3 O C R H

Moffatt oxidation
OH R C R DMSO ClCO-CO2H Et3N O R C R + Me2S + Cl, CO, CO2 + Et3NHCl

H3C S CH3 O H

R

Swern oxidation MeO DDQ dioxane HO

O 1st alcohol R C OH O R C OH Ag2O HO PCC (pyridinium chlorochromate) (Py-HCl-CrO3) most widely used PDC (pyridinium dichormate) (H2Cr2O7 + 2 Py) use 1 - 1.2 eq.
. N CrO3 HCl

MeO i. Jones reagent ii. KMnO4 HO

OH

O DDQ:

CN CN

O

Cl Cl

JOC, 1980, 45, 1596. aldehyde Al(OiPr)3 acetone O Synthesis, 1979, 537.

O

N+ H

2

Cr2O7- 2

Collins reagent: (CrO3 - 2 Py) Swern oxidation: (DMSO, oxalyl chloride, Et3N) 1. drawback: use 6 equivalent, a messy reaction drawback: react at low T Synthesis, 1981, 165. 2. must be very dry, fire easily; purify by CaH2 3. an old oxidizing material, isolated by Collin. JOC, 1977, 42, 1991. Ag2O: 1. a mild oxidizing agent 2. must be freshly prepared: NaOH into AgNO3 (aq) 3. may involve surface change, react with CO2, light

5-i

C-NX2

C=O
O

5-i.1 C-NH2

C=O
O

O O

Ph Ph Ph O Ph

O

N O

Ph Ph

Ph N OH Ph H3O+ Ph Ph O

i. Corey approach: subtituted-quinone // ii. Watt approach a. PhCHO // MCPBA // H3O+ b. ArPhO // MCPBA // H3O+ c. NBS // KOH // H3O+

H3O+

O

//

H3O+

Ph Ph

NH2 H3O+ PhCHO MCPBA Ph

NH2

O C H N

Ph

Ph O

NH2

NH2 Ph

PhCHO O N C Ph

Ph N C Ph Ph

MCPBA

Ph

o
N C Ph

NH - PhCHO

H3O+

Ph

H
O

5-i.2 C-NO2
i. Et3N // H3O+

C=O
NO2 O O O O O O H N O O

Et3N N O O

H3O+ O

Nef reaction Chem. Rev. 1955, 55, 137.
NO2

O TiCl3 pH1

ii. TiCl3 / pH 1 or 6 iii. SiO2 / NaOH // H3O+

McMurray reaction
O O TiCl3 pH6

pH 6: weak acid buffer, avoid interfere with ketal group

JACS, 1977, 99, 3861. THL, 1981, 5235.

NO2

iv. LDA / MoO5-Py- / HMPT // H3O+ v. NaOH // CH3OH / H2SO4 // H3O+ vi. KMnO4 / KOH

NO2 S Ph

1. NaOH 2.CH3OH H2SO4
KMnO4 O O

OMe S OMe Ph
O N Mn O O O

H3O+ S Ph
O N O O Mn O O

O

Synthesis, 1988, 379.

JOC, 1969, 34, 2438.

KOH NO2
N O O

O

- MnO2 - NO3-

O

5-j

C-Br

C=O
NMe2 NMe2

indrect: change to RC-OH followed by oxidation direct:
1. DMAPO / DBU / CH3CN 2. NaIO4 / DMF a new method 3. DMSO reagents: i. DMSO / AgBF4 ii. DMSO / ZnS THL, 1974, 917. JACS, 2003, 68, 2480. RCHBrMe
OH Br

Bull Soc. Jpn., 1981, 54, 2221. NaIO4 / DMF 150 C, 40 min
o

N O O 84 %
DMSO AgBF4

DMAPO

via:

N O

Br

THL, 2003, 44, 1375.

N,N-Dimethylaminopyridineoxide Ph H

RC(O)Me
OH O

Br R

DMSO / AgBF4 - AgBr R

O

S H - Me2S R

O

DMSO ZnS

5-k C-H
1. SeO2

C=O
O JCS, 1932, 1875. Ph CH3 Se SeO2 Ph

O O H

2. DDQ / TFA. O 3. I (3 eq.) O OH O

Synthesis, 1979, 537. Ar Ph-F / DMSO a select oxidant JACS, 2001, 123, 3183. CH3 N H CH3

DDQ Ar N CH2

TFA Ar N H O O CHO

DDQ Ar CF3 N O O

H3O+ CF3 Ar N H CHO

C C 6- a RC CH b RCH2-SO2Ph c C C dC C e RCH(CO2H)-CH3 f -C(O)-CH3
R C C H

g h i

O X

O O

CRR'=CHX
n-BuLi R Br Li n-BuLi R LiBr OH R C C C H R II Pd I Ph R C C H Pd C C R Ph

R C C R' R C C CHOH R

H

6-a

RC CH
i. n-BuLi / RX

RC CR'
n-BuLi: not MeLi, or t-BuLi, fire easily RX: R-Br, R-TOS, RCHO, RC(O)R

R C C H

R C C H

O R C H R C C Li

ii. (Ph3P)2PdCl2, CuI, Et2NH / PhI

R C C H

R C C Ph Ph-I

Pd

Pd

II

THL, 1975, 4467.
Cl

R C C Ph

iii.

N Li

OMe

R C C H

R C C Ar

Cl OMe

N H

?+

addition steric
?R C C Li

C C R

steric base, prevent Nu attack

OCH3

OMe

iv. CuI, NaI, Na2CO3, R

C

C

CH2Cl

R

C

C

H

Cl CH2 C

C

R' R C C CH2 C C R'

Synthesis, 2000, 691.

6-b

RCH2-SO2Ph

RC CR'

R CH2SO2Ph sulfone

n-BuLi RCHO

SO2Ph R C C R' OH

Ac2O

SO2Ph R C C R' OAc

SO2Ph -HOAc R C C R' H

KOtBu

R C C R'

- PhSO2H

n-BuLi / R'CHO // Ac2O // KOtBu

sulfonic acid: PhSO3H; sulfinic acid: PhSO2H; sulfenic acid: PhSOH

6-c

C C

C C
JACS, 1975, 97, 891.
R H H

KAPA K+N-HR

C H R

limit: continueous CH2, not branch
R C C C CH2 CH2-CH2 CH2 CH3 H allene

i. move to terminal

use: KAPA

NH2 NHK

propargylic
CH2 CH2 CH3 R C C C C CH2 C CH

ii. protect - deprotect

use: Co (CO)8 // Fe(NO3)3, EtOH Fe(NO3)3: weak oxidizing agent

H R C C C C H

R C C C C

CH2C C

K

irreversible at the final step
H 1.B2H6 2.HOAc

HO C CH Co2(CO)8 HO HO HO C C H

HO CO

C Co

C Co

CO CO CO CO CO HO

choose B2H6, not H2/cat: Co poison cat
C CH Fe(NO3)3 EtOH HO H

6-d

C C

C C

use: i. Br2 / CCl4 // KOtBu ii. Br2 // KOH Ph Ph Ph Ph
HO

CO Co Co CO CO CO CO CO

JACS, 1941, 63, 1180.

6-e

R CH CH3 CO2H

R C C H

R CH CO2H

CH3

Pb(OAc)4, LiCl Br2/CCl4 R CH CH2 KOtBu KOtBu CH3

R C C H

use: Pb(OAc)4, LiCl // KOtBu // Br2/CCl4 // KOtBu in fact: convert to C=C firstly Cl-

OAc R C C O Pb OAc OAc O

Cl R C CH3 - CO2, - Pb (OAc)2, -OAc1.NaBH4 1.Br2/CCl4 2.KOtBu O 3.CrO3.2Py

O CO2H

LiCl Pb(OAc)4

O Cl

H

2.KOtBu

HO

involved: reduction NaBH4, oxidation CrO3.Py, prevent ?-H attacked by Br2

6-f

O R C CH3
i. NaBH4, H3O+, Br2, KOtBu

R C C H
O R C CH3 NaBH4 OH R C CH3 H 3O + R C CH2 Br2 RCHBrCH2Br KOtBu R C CH

ii. NH2OH, NaNO2 / H2SO4 // Ac2O / DMAP
O

O R C CH3

NH2OH R C N OH CH3

H2SO4

R C N OH2 CH3

NaNO2

O R C N N O C H H H

Ac2O DMAP

OAc R C N N C H N O H R C CH

JOC, 1979, 44, 4116.

N

iii. LDA, ClPO(OEt)2
O

O R C CH3

LDA ClPO(OEt)2

OPO(OEt)2 R C CH H LDA R C CH N DMAP: 4-N,N-Dimethylaminopyridine German invention, as acylating agent N C O

CH3

JOC, 1980, 45, 2526.

vinyl phosphate

mixture of Ac2O / DMAP:

LDA: Li N(iPr)2, ignored a long time, re-introduced by Michigan State U. became famous, appeared every week

6-g

TsNHNH2

O

O

O
THL, 1967, 3943.

O

O

N NH Ts

O

N N Ts

O

Ts-

N2

O

use: TsNHNH2 / EtOH, heat

H2O2

O CH3 CH CH2 (MVK)

Na / NH3(l)

O

Robinson Annulation O

OH

6-h

Cl

O

R

HO LiNH2 / NH3 (l)

use: LiNH2 / NH3 (l) / R-X

Cl

O

RX

R

HO

6-i.

R R'

C C

X

R C C R'

JACS, 1955, 77, 3293. JACS, 1958, 80, 4599.

Ar i. NaOEt (when X = Br) Ar' Me Ph

Br H OSO2CF3 H

NaOEt

Ar

C

C

Ar'

Me via: Ph C

via:

Ar Ar'

Br ?

ii. BuLi (when X = -OSO2CF3)

BuLi

Me

C

C

Ph

JOC, 1978, 43, 364.

C C 7- a CH-CX b CH-CH 7- a
C H
C C H OH C C H OMs C C H OAc C C H OC(S)SMe C C H I

c CX-CY d
X C C

f g

C O C C

i C C j C-OH

e -C(O)-CH3
C C

h C CH

C X

C

C OH

use:

i. p-TSOH.H2O or CSA ii. weak acid: HOAc; HCO2H; H2C2O4 iii strong acid: H2SO4; HCl iv. ArSeCN, PBu3 // MCPBA
HO

OH Ph MsCl MsO

(CO2H)2 / benzene

H Ph

applied for reactions: without rearrangement; no regiosiomer p-TSOH major + minor

Dean-Stark RONa
or KOtBu

OH

use base: i. RONa; ii. KOtBu use: heat use: heat
N N

H O O CH3

i. n-BuLi ii. CS2
OH

heat

S O SMe

heat

iii. CH3I
I DBN

syn elimination

use base: DBN

compare:

OH

H2SO4

C C H NH2

i. CH3I / Ag2O // heat (Hoffman elimination) ii. HCHO / HCO2H // H2O2 // heat (Cope elimination)
CH3I (excess) NH2 HCHO HCO2H

NMe3I

-

H Ag2O H H 2O 2

NMe3 OH O NMe2

-

heat

NMe2

heat

7- b C
H

C H
i. DDQ ii. chloronail

C

C
NC NC O O Cl Cl Cl Cl O O Cl Cl

OH MeO OAc

NO2 Se N MCPBA heat

MeO

OAc CO2Me

mechanism: Ph-Se-CN

:PBu3

RCH2CH2-OH Ph-Se-PBu3 MCPBA heat TBDMS O . . O RCH=CH2

MeO2C

OAc CO2Me DDQ O

MeO2C

OAc

RCH2CH2-O-PBu3 TBDMS O H . . O MeO

MeO

DDQ

iii. Pd-C; or Ni; Pt, Rh

Pd-C

23oC, 14h, 88%

O

THL, 1991, 3679.

7- c

C X
C C

C X

C

C
C C
OH OH CSCl2 C O C O S

base

C C

O S P

OR OR OR

i. CSCl2 /

N

OH OH

P Ph

N

thiophosgene

thionocarbonate

or: ?
OH OH P(OMe)3 CSCl2 O S P O OR OR OR

O

ii. CSCl2 / P(OMe)3

HCO3H

C Br

C Br

i. Zn / acetone ii. In / MeOH JCS.CC, 1998, 2113.

application: i. protect alkene: via Br2 // Zn ii. purify compound
CCCCC 36 oC CCCC=C 31 oC CCCC C 148 oC Cl Cl Sn Et H

C

C

OMs OMs C C

NaI / Zn (Cu)

C via: I

C I OH Et H3C I H CH3 POCl3 Py

OH I

POCl3 / py // Sn

Et H3C

Cl P Cl O H CH3 I

O

OAc AcO AcO AcO Br O Zn HOAc OAc OAc

OAc O

JOC, 1978, 43, 364.

C Br

C OAc

Zn / HOAc

7- d
7-d.1

X C C O C C

C

C
H O H WCl6 RLi H O H LiPPh2 SN2 H OH H PPh2 CH3I H OH H PPh2 CH3 H O H H CH3 P H Ph Ph H H

C

C

i. WCl6 / RLi ii. LiPPh2 / CH3I iii. Na

product retention product inversion
Cl Na O

oxaphosphetane

(special structure):

R

H R C C CH2 CH2 CH2 OH H

7-d.2

S C C
use: (EtO)3P

C

C
S R1 R2 (EtO)3P R1 R2 Synthesis, 1977, 1134.

7- e

O C CH3 C C
HO Pregnenolone (a female hormone)

O TsNHNH2 HO O

N NH n-BuLi

Ts

HO Li N NH Ts N N Ts H 2O Br2

Br S CH3

use: TsNHNH2 // n-BuLi

JACS, 1972, 94, 7748.
TsNHNH2 O EtOH TsNHN n-BuLi

CH3-S-S-CH3

JOC, 1977, 42, 1079.

7-f

C

O O

C

C RC CR'
not CO2Me O H O Et CN H O

7-f.1 RC

+

Ph3P CH CO2Me not

O PPh3 + H C CO2Me difficult to prepare

i. Wittig Reaction 1953 discover (olefination reaction) ii. Phosphonate Wittig Reaction (Horner-Emmons Modification) iii. Silyl Wittig Reaction (Peterson Reaction) THL, 1981, 2751. JOC, 1968, 33, 780.

use: Ph3P-CHR' use: (RO)2PO-CHR'

via: betaine, oxaphosphetane (NMR) RO = MeO-, EtO-

+ Ph3P CH Et
CN

PPh3 + O Et expensive unstable ylid gives cis (Z) stable ylid gives trans (E)

water soluble, removed by extraction (comparison: O=PPh3 highly soluble in organic solvent)

+

PPh3

Synthesis, 1984, 384. Me3SiCHR-Li+ - + Ph3SiCH2 Li === Ph3SiCH2Br + n-BuLi (exchange) Me3SiC-H-MgBr === Me3SiCH2Cl + Mg (metal reduction) Ph3SiC-HCH2Ph === Ph3SiCH=CH2 + PhLi (addition to vinylsilane) Me3SiC-HCO2Et === Me3SiCH2CO2Et + Li (metalation) Me3SiCH=PPh3 === Me3SiCH2PPh3+ X- + KH R
R

Me3SiC-H-MgBr O H O SiMe3 R R R R R R

not good for Ph3P=CH2 function as base: O N C S R PPh3 + S C R N C R R R R R C C R Ph(OAc)4

THL, 1973, 3947.
R R C NHNH2 R2CO R R N N C PPh3 C S R R

C

O

N2H4

C N

N C

H 2S

iv. CH2(ZnI)2 Synlett, 1988, 12, 1369.

CH2(ZnI)2 O CH2
R R N C S N C R R PPh3 R R C

v. CH2CHBr2, Sm, SnI2 / CrCl3, THF Chem. Lett, 1995, 259.

R
O

O

R

O Ph O S CH2 N Me

O OH S

Ph NMe Al (Hg)

vi. Sulfoximide (Johnson C.) vii. Grignard reagent:

use: Ph

S

CH2 Li

// Al (Hg) 1. TMSCH2MgCl

N. R. if use: Ph3P-CHR' due to steric hindrance

N Me

use: TMSCH2MgCl
O H

THL, 1988, 4339. THL, 1973, 3497.

2. NaOAc, AcOH

H

via:

H O C R R'

SiMe3

methylenation advantages over the Wittig: 1. by-products are more easily removed, 2. reaction suffers less from steric effects.

7-f.2

RC

O

RC

CR
R O R R not for Wittig, ylid unstable R C O N 2H 4 R R N C S N C R R C NHNH2 R2CO R R N N C PPh3 C S R R R R C N N C R R H 2S H R R R PPh3 + S C R C N S

H N C R R

R R

Ph(OAc)4

i. use: N2H4 / H2S / Pb(OAc)4

PPh3

R R

R C C R

C

O

O N2H4

O

O

1. H2S 2. Pb(OAc)4 3. H3O+ S

O

O

1. H2S 2. Pb(OAc)4 S

O P(OEt)3 N N N N N N

O TiCl3 Zn-Cu Ti (II) O O via: R C C R

O

N N

N N

N N

O

O

O

S

N N

S

N N

S

O

R C

C

R

O

O

ii. McMurry Coupling

TiCl3-LiAlH4 / THF JACS, 1974, 96, 4706. TiCl3 / Mg BASF, 1973, 2147. TiCl4 / Zn Chem. Lett, 1973, 1041. TiCl4 / K JOC, 1978, 43, 3253.

O commercial available butene side product (trimer)

7- g

C

C

C

C

not use H2 / Pt: might convert to alkane R H H R

form trans alkene:

i. Li / NH3; or other IA metals ii. Li / EtNH2 iii. LiAlH4 / THF

R C C R

C C

form cis alkene:

i. H2 / Ni2B (P-2 catalyst) ii. H2 / Pd-CaCO3 (Lindlar catalyst) iii. H2 / Pd-BaSO4 iv. B2H6 / HOAc (Diborane) v. N2H2 vi. HCHO / Pd-C / Et3N

Et

C C Me

Et H

Me C C H H H Ph C C CHO JOC, 1980, 45, 4926.

Ph C C

CHO

HCHO Pd-C Et3N

C

CH R BH 2 (Syn)

C H R

C H B R R Br B CN C R H C H Br-CN

Br C H R C B

H

CN-

Br C H C B R

H CN R

7- h

C

CH

C

C R

all form trans alkene:
H C CH R H

Br C H C R

R H R H

H B R CN

i. R2BH / Br-CN (hydroboration) ii. DIBAL / n-BuLi / CH3I (hydroalumination)
R C C H

Syn elimination

DIBAL

R H

C

C

H AlR2

n-BuLi

R H R H

C C

H Li

CH3I

R H

C

C

H CH3

iii. Cp2ZrClH / RX (hydrozirconation)

R C

C

H

Cp2ZrClH

C

C

H ZrCP2 Cl

R'X

R H

C

C

H R'

7-i C

C

C

C

application: protecting group not for
C H C OH

double bond might move
CO2Et CO2Et 200 oC CO2Et CO2Et COOH 180C CH2 OH LAH OH PhSO2Cl NaBr CO2H Br Br

via dihalide

C=C

C C X X

C=C

EtO2C CO2Et CH2 CO2Et

via halohydrin via epoxide

C=C C=C C=C

C C H X O C C C C

C=C C=C C=C Ph

CO2Et RONa

1. OH2. H3O+

via diene-olefin addition via diradical Ph

Ph

JACS, 1998, 100, 877.

7-j

C-OH

C

C
NO2

OH

MnO2 Ph3P CH3 BrMTBD NO2 Synlett, 2002, 215.

N N N CH3

MnO2 / Ph3P CH3 Br- / MTBD

in situ alcohol oxidition Wittig rxn

MTBD

C-X 8- a C-OH b C-NH2 8-a
C-OH C-X
1.

c C=O d C(O)Z e C-H
O O Chem. Rev., 1996, 96, 1737. S N F S JOC, 1993, 58, 3800. O O O

CHCl2 O N 1. CF3CHFCF2NEt2 OH 2. HOAc / iPrOH OH H
N Cl N

8-a.1

C-OH

C-F

2. F3S-NEt2 (DAST) $ 500 / 125 g

CH3

CH3 S O 3. CF3CHFCF2NEt2 (Ishikawa reagent)
Cl

O S O

OH F NHCOCHCl2 NMe2 via: Me Et O H Cl

1. SOCl2

Me
N

HCONMe2
Cl N Cl

Me Et

H Cl

N Cl N

8-a.2

C-OH

C-Cl

2. HCONMe2 /

Et
Cl

3. COCl2 / DMF 4. CCl4 / PPh3 5. HCl / ZnCl2

JOC, 1983, 48, 2625.

Org.Lett, 2002, 4, 553.

OH

CCl4 PPh3 HCl OH

Cl Can.J.Chem, 1968, 46, 86. Cl JACS, 1938, 60, 2497.

6. HCl fit for 3rd alc, directly

8-a.3

C-OH
1. HBr 2 PBr3

C-Br
fit for Can. J. Research, 1932, 7, 464. OH OH JOC, 1980, 45, 1638. PI3 CH3I JCS, 1905, 87, 1592. OTBS BnO Me OH PPh3 / I2 96 % 1st

ZnCl2

alc

TMSBr Br OH

3. TMS-Br (HMDS / PyH Br3)

good for 3rd alc prepare in situ

Si Si (HMDS)

N + Br3 H

Si

Br

8-a.4

C-OH
1. HI

C-I
CH3OH

(PyH Br3) PBr3

TMS-Br

2. PI3 2. PPh3 / I2

$ 35 / 1000 g $ 65 / 500 g $ 80 / 50 g

JACS, 2003, 125, 1458.

OTBS BnO Me I

3. TsCl / C6H6 // NaI Intermediate. Org. Chem, 1988.

PBr3 PI3

8-b C-NH2

C-X
NH2

C-NH2

C-F
for aromatic amine

Cl

Cl

NaNO2 HCl, HBF4

Cl

N2BF4 Cl

F Cl Cl

NaNO2 / HCl / HBF4 /

8-c C=O
C=O

C-X
C-F
CF2Br2 / Zn O

CF2Br2 / Zn 58 %

F F JCS.PT I, 1993, 335.

8-d C(O)Z 8-d.1 8-d.2
C(O)Z

C-X
O Cl RhCl(PPh3)3 Cl

C-Cl
O OH

C(O)Z

C-Br

R

C

1. AgNO3/KOH 2. Br2

R

Br

Chem Rev., 1956, 56, 219.

Ber. 1942, 75, 296.

8-e

C-H
C-H
i.

C-X
C-F
N O F

8-e.1

Chem. Rev., 1996, 96, 1737.

PhCH2C(O)CH3

F+

PhCHC(O)CH3 F Ar F

OH R CH3

F-TEDA-BF4 Ar Me-CN, TEDA=triethylenediamine

OH F R 55-90 %

S

O

ii. F-TEDA-BF4 iii. iv. v.

JCS.CC, 1994, 149. JOC, 1988, 53, 2803. R HF F electrolysis 1.4-1.6 V anode: Pt or Ni O R R '' R

F2-N2 CFCl 3-CHCl3
adamantane 90 % 1. regioselective fluorination at the more substituted positions 2. electrophilic in nature

F2-N2 / CFCl3-CHCl3 HF / electrolysis already industrilized NF3O / TBAH / CH3CN

R = CH3CO, COCF3, CCl3, NO2 O H R' NF3O TBAH / CH3CN rt, 12h R O R '' O F R'

THL, 2003, 44, 2799. TBHA: Tetrabutylammoniumhydroxide

8-e.2

C-H

C-X

X = Cl, Br, I O O NBX R1 H R2 R3 Mg(ClO4)2 R1 X R2 R3 NBX:
O N X

O

O

O

NBX / Mg(ClO 4)2

JOC, 2002, 67, 7429.

X = Cl, Br, I

8-e.3

C-H

C-I
I2 / HNO3 JACS, 1917, 39, 437. I2 / HNO3

I 86 %

C-CH3 9- a C-X 9-a
C-X C-CH3
Me3Al Br CH2Cl2 98 %

(CH3)3Al

bridgehead methylation
Organomet. Chem. Rev., 1996, 4, 47.

4-e

C=O

C-N
reductive amination!

O

CH3NH2 acid

N CH3 NaBH3CN PH 6 N N N
O SiMe3

NH CH3

1. RNH2 // NaBH3CN most general 2. Me3SiN3 // LiAlH4 via: acetal / ketal type exchange 3. NH3 (excess) // RaNi / H2 catalytic reductive amination 4. PhNHNH2 // Al (Hg) via: hydrazone 5. NH4+HCO2O

O

Me3SiN3

O SiMe3

N N N

N
LiAlH4

N N

H N N H

H N N
LiAlH4 NH2

O

NH3 RaNi / H2

NH2

H PhNHNH2 N NHPh N NHPh Al (Hg) H

H N

H

(radical)

H

Leuckart reaction
O O NH3 NH2 H O CO2 NH2

6. RNH2 / n-Bu2SnClH / HMPA Synthesis, 2000, 789.

Ph

CHO

PhNH2 n-Bu2SnClH HMPA

Ph Ph NHPh via:

N H Sn O

Ph By Cl By P(NMe2)3

immonium salt

4-f

C=C C=C

C-C-N
B2H6 NH2Cl 3 B B RR CH3CN N Cl H

C-C-NH2

B2H6 / NH2Cl B2H6 / H2NO B2H6 / H2NOSO3H
H+ + H

R N B R H OH N C CH3

NH2

N C CH3

H 2O

O NH C CH3

C=C

C-C-NHCOCH3
CH3CN / H3O+

CH3CN: bp 81-2, mp -48; polar solvent, for UV, HPLC, NMR (CMR very high field 0.86 ppm, ring current)

R C NH2 4-g R C N R C NH2 R' R C NH2 R C NH2 R'
AlH3 / THF R'Li // NaBH4 Br TH, 1989, 30, 5137. JOC, 1993, 58, 4313. JOC, 1987, 52, 3901. TH, 1989, 30, 5139. CO2H LiAlH4 1. LiAlH4 2. NaBH3(OCOR) O 3. B2H6 4. Et3O+ BF4- // NaBH4 5. P4S10 // RaNi 6. Lawesson's reagent // RaNi
NH O NH O 1. Et3O+BF42. NaBH4 NH 1. Et3O+BF42. NaBH4 N H O NH Et3O+BF4- Et2O N OEt H H N OEt H - EtOH N H N H

C N

AlH3 THF Br NH2

JOC, 2000, 65, 8152.

4-g.a form 4-g.b form

R'MgX // NaBH4 R'MgX // Li/NH3(l) R'2CuLi // NaBH4

R

C

N

R'M // H

R R'

C

NH2

4-h

O R C NHR

R CH2 NHR

H N

H N

OH JOC, 1985, 50, 1711.

THF O

CH3

C NH

CO2CH3

B2H6

CH3 CH2 NH

CO2CH3

not for B2H6, affect C=C

Et3O+: Et source, convert to good leaving group; not use EtBr different from: HC(OEt)3 dehydrating agent; H2C(OEt)2 (ketal agent)
NH O NH S NH

[Sulfide]

RaNi

4-i

RCH2

O C Z O C Z
O

R CH2 NH2 R CH2 NHR' R CH2 NH2
Hofmann (see below) 1. Hofmann: SOCl2, NH3, Br2 / OH- / heat not good, lots of side-products, Br2 strong oxidant toxic, Schmidt died of it 2. Schmidt: HN3 // H2O Application:
O

O SOCl2 R CH2 C OH Schmidt HN3

O R CH2 C Cl NaN3 Curtius

NH3

4-i.1

Hofmann O O Br2 R CH2 C NH2 R CH2 C NH-Br OHO R CH2 C N N N OTs R CH2 N C CH3 H2O R CH2 N C O

O R CH2 C N-Br

RCH2

RCH2 C NH2 O RCH2 C OH O

O R CH2 C N N N OH

H2O

R CH2 NH2

O R CH2 C CH3

Beckmann

N

N

O R CH2 N C CH3 H

R CH2 C CH3

R CH2 C CH3 anti-migration
CO2H CO2H

H2O from outside
CO2H CO2H

RCH2 C Cl Curtius: NaN3 // H2O
most useful

CO2Et CO2Et

CO2Et CO2Et OH-

CO2H CO2H

O RCH2 C CH3
Beckmann: NH2OH // TsCl / H2O JACS, 1981, 103, 7368.

H2 / Pd-C - CO2 O Bu2AlH O

1.NH2OH O 2.TsCl Ts N

n-Pr3Al 。 80 C

Pr- source

N

+

N

H- source

N H

4-i.2 RCH2

O C Z
O

R CH2 NHR'
NH2 O O R C NH2 PhI(OAc)2 O R C N I PhI(OAc)2 KOH / CH3OH O R C N NH

O OCH3 JOC, 1993, 58, 2478. Ph OAc CH3OH O R NH C OCH3

RCH2 C NH2
PhI(OAc)2 // KOH / CH3OH

Ph OAc

KOH

I

R PhI, OAc

N

C

O

C=O 5- a C=O g C(OR)2 d C C b C=S e C N C(SR)2 c C=N-OH f C=C-OR h C-OH C=N-H C=C-SR 5-a
C=O
O R C CR

i C-NH2 C-NO2 j C-Br k C-H

O

NaNH2 CO2 H3O+

O C OH O

NaBH4

Ac2O OH COOH OAc COOH COOH

SO2Cl N 2H 4

camphor

HNO2 C NHNH2 O O C N N N O

H3O+ N C O NH2 NH

H3O+

epicamphor O

C=O
O R CH2 O Br2 NaBH4 OHHBr CrO3 Zn Br C R HO

not use NaN3 directly, avoid attack ?-C
O O OH OH O O Br2 NaBH4 O CrO3 Br Br O Zn

i. via: ?-CO2H
NaNH2 NaBH4 Ac2O SOCl2 N2H4 HNO2 H 3O + CO2 / H3O O

OO

hecogenin acetate
O O OH OH
-

corticosteroid
OH HBr

ii. via: ?-haloketone

iii. via: aldol process
PhCHO O KOH NaBH4 CeCl3 H 3O
+

limit for: 6 ring, with 1 ?-position blocked
O3 Zn O

iv. via: thioenol ether
O R C CH2R Ph LDA S S Ph LAH MsCl KOtBu HgCl2 aqCH3CN O R CH2 C R O KOH O CrO3 H2SO4 R CH2 C R O O PhCHO O HO Ph H O OH-

1. in the presence of CeCl3, H- attack C=O; otherwise may attack ?-C . and give mixture; mechanism: form Ce-H, follow by H- transfer other choice: use Al(OiPr)2 / iPrOH (MPV) 2. need Zn, convert to C=O; other choice Me2S
NaBH4 O CeCl3 Ph OH H+ C O O O C O O3 Zn

O

C

Ce

H Cl

v. via: epoxysilane
O R C CH2R TsNHNH2 MeLi TMSCl MCPBA LAH

Ph

Ph

O

drawback: require simple structure, use many powerful agents: MeLi, LAH, MCPBA
H N N Ts TsNHNH2 MeLi SiMe3 O SiMe3 OH

O LDA SPh H SPh SPh HgCl2 LAH MsCl

OMs SPh H KOtBu

O

Li into structure
N N Ts Li N N Ts H Li MeLi N2, TsOH O TMSCl SiMe3

PhSSPh

O

CH3CN (aq)

MCPBA

LAH

CrO3

SiMe3 O

thioenol ether

5-b

C=S
i. hydrolysis ii. MCPBA

C=O
CH3O S OH H MCPBA CH3O O NMe2

OH H NMe2

5-c

C=N-Z
5-c.1

C=O
N OH

NOH
RaNi NH O

O KMnO4 / Al2O3

C=N-OH

i. RaNi ii. TiCl3 iii. KMnO4 / Al2O3 THL, 2001, 42, 4775.
OH H 3O + NH2

C(CH3)3
O

acetone rt, 5 min

C(CH3)3

5-c.2

C=N-H

H3O+

C

NH

H

JOC, 1970, 35, 858. JOC, 1972, 37, 2138.

5-d

C C

C=O
Hg2+ / H2O HgSO4 / H2O / H2O

Hg2+ Hg H2O

H 2O

OH
HgX OH H O

O HgX

not certain of which mechanism

5-e

C N

C=O
Ph CN Al (iBu)2H Ph C N Al H3O+ O Ph C H N O R-CH2-C H O R-CH-C H R' O R-CH-C R" R' R' X / n-BuLi
OH OH

R-CH2-C 5-e.1

1. DIBAL /

H3O+ Stenphen reduction mostly for Ar O C N Ar C H J.Org.Syn, 1925, 3, 1874.

2. HCl./ SnCl2 / Et2O 3.
OH OH

H3O+

5-e.2

5-e.3

OH OH

H R' X O R R N H3O+ O H n-BuLi

O R

N R'

H

CH3I

R CH2 C N

O R

N R' H3O+

R''MgBr O R R R' O H N R'' R'

H3O+

R R'

O R''

H

CH3I R''MgBr H3O+

JOC, 1973, 38, 2129.

O R

N H R'

4-e

C=O

C-N
reductive amination!

O

CH3NH2 acid

N CH3 NaBH3CN PH 6 N N N
O SiMe3

NH CH3

1. RNH2 // NaBH3CN most general 2. Me3SiN3 // LiAlH4 via: acetal / ketal type exchange 3. NH3 (excess) // RaNi / H2 catalytic reductive amination 4. PhNHNH2 // Al (Hg) via: hydrazone 5. NH4+HCO2O

O

Me3SiN3

O SiMe3

N N N

N
LiAlH4

N N

H N N H

H N N
LiAlH4 NH2

O

NH3 RaNi / H2

NH2

H PhNHNH2 N NHPh N NHPh Al (Hg) H

H N

H

(radical)

H

Leuckart reaction
O O NH3 NH2 H O CO2 NH2

6. RNH2 / n-Bu2SnClH / HMPA Synthesis, 2000, 789.

Ph

CHO

PhNH2 n-Bu2SnClH HMPA

Ph Ph NHPh via:

N H Sn O

Ph By Cl By P(NMe2)3

immonium salt

4-f

C=C C=C

C-C-N
B2H6 NH2Cl 3 B B RR CH3CN N Cl H

C-C-NH2

B2H6 / NH2Cl B2H6 / H2NO B2H6 / H2NOSO3H
H+ + H

R N B R H OH N C CH3

NH2

N C CH3

H 2O

O NH C CH3

C=C

C-C-NHCOCH3
CH3CN / H3O+

CH3CN: bp 81-2, mp -48; polar solvent, for UV, HPLC, NMR (CMR very high field 0.86 ppm, ring current)

R C NH2 4-g R C N R C NH2 R' R C NH2 R C NH2 R'
AlH3 / THF R'Li // NaBH4 Br TH, 1989, 30, 5137. JOC, 1993, 58, 4313. JOC, 1987, 52, 3901. TH, 1989, 30, 5139. CO2H LiAlH4 1. LiAlH4 2. NaBH3(OCOR) O 3. B2H6 4. Et3O+ BF4- // NaBH4 5. P4S10 // RaNi 6. Lawesson's reagent // RaNi
NH O NH O 1. Et3O+BF42. NaBH4 NH 1. Et3O+BF42. NaBH4 N H O NH Et3O+BF4- Et2O N OEt H H N OEt H - EtOH N H N H

C N

AlH3 THF Br NH2

JOC, 2000, 65, 8152.

4-g.a form 4-g.b form

R'MgX // NaBH4 R'MgX // Li/NH3(l) R'2CuLi // NaBH4

R

C

N

R'M // H

R R'

C

NH2

4-h

O R C NHR

R CH2 NHR

H N

H N

OH JOC, 1985, 50, 1711.

THF O

CH3

C NH

CO2CH3

B2H6

CH3 CH2 NH

CO2CH3

not for B2H6, affect C=C

Et3O+: Et source, convert to good leaving group; not use EtBr different from: HC(OEt)3 dehydrating agent; H2C(OEt)2 (ketal agent)
NH O NH S NH

[Sulfide]

RaNi

4-i

RCH2

O C Z O C Z
O

R CH2 NH2 R CH2 NHR' R CH2 NH2
Hofmann (see below) 1. Hofmann: SOCl2, NH3, Br2 / OH- / heat not good, lots of side-products, Br2 strong oxidant toxic, Schmidt died of it 2. Schmidt: HN3 // H2O Application:
O

O SOCl2 R CH2 C OH Schmidt HN3

O R CH2 C Cl NaN3 Curtius

NH3

4-i.1

Hofmann O O Br2 R CH2 C NH2 R CH2 C NH-Br OHO R CH2 C N N N OTs R CH2 N C CH3 H2O R CH2 N C O

O R CH2 C N-Br

RCH2

RCH2 C NH2 O RCH2 C OH O

O R CH2 C N N N OH

H2O

R CH2 NH2

O R CH2 C CH3

Beckmann

N

N

O R CH2 N C CH3 H

R CH2 C CH3

R CH2 C CH3 anti-migration
CO2H CO2H

H2O from outside
CO2H CO2H

RCH2 C Cl Curtius: NaN3 // H2O
most useful

CO2Et CO2Et

CO2Et CO2Et OH-

CO2H CO2H

O RCH2 C CH3
Beckmann: NH2OH // TsCl / H2O JACS, 1981, 103, 7368.

H2 / Pd-C - CO2 O Bu2AlH O

1.NH2OH O 2.TsCl Ts N

n-Pr3Al 。 80 C

Pr- source

N

+

N

H- source

N H

4-i.2 RCH2

O C Z
O

R CH2 NHR'
NH2 O O R C NH2 PhI(OAc)2 O R C N I PhI(OAc)2 KOH / CH3OH O R C N NH

O OCH3 JOC, 1993, 58, 2478. Ph OAc CH3OH O R NH C OCH3

RCH2 C NH2
PhI(OAc)2 // KOH / CH3OH

Ph OAc

KOH

I

R PhI, OAc

N

C

O

C=O 5- a C=O g C(OR)2 d C C b C=S e C N C(SR)2 c C=N-OH f C=C-OR h C-OH C=N-H C=C-SR 5-a
C=O
O R C CR

i C-NH2 C-NO2 j C-Br k C-H

O

NaNH2 CO2 H3O+

O C OH O

NaBH4

Ac2O OH COOH OAc COOH COOH

SO2Cl N 2H 4

camphor

HNO2 C NHNH2 O O C N N N O

H3O+ N C O NH2 NH

H3O+

epicamphor O

C=O
O R CH2 O Br2 NaBH4 OHHBr CrO3 Zn Br C R HO

not use NaN3 directly, avoid attack ?-C
O O OH OH O O Br2 NaBH4 O CrO3 Br Br O Zn

i. via: ?-CO2H
NaNH2 NaBH4 Ac2O SOCl2 N2H4 HNO2 H 3O + CO2 / H3O O

OO

hecogenin acetate
O O OH OH
-

corticosteroid
OH HBr

ii. via: ?-haloketone

iii. via: aldol process
PhCHO O KOH NaBH4 CeCl3 H 3O
+

limit for: 6 ring, with 1 ?-position blocked
O3 Zn O

iv. via: thioenol ether
O R C CH2R Ph LDA S S Ph LAH MsCl KOtBu HgCl2 aqCH3CN O R CH2 C R O KOH O CrO3 H2SO4 R CH2 C R O O PhCHO O HO Ph H O OH-

1. in the presence of CeCl3, H- attack C=O; otherwise may attack ?-C . and give mixture; mechanism: form Ce-H, follow by H- transfer other choice: use Al(OiPr)2 / iPrOH (MPV) 2. need Zn, convert to C=O; other choice Me2S
NaBH4 O CeCl3 Ph OH H+ C O O O C O O3 Zn

O

C

Ce

H Cl

v. via: epoxysilane
O R C CH2R TsNHNH2 MeLi TMSCl MCPBA LAH

Ph

Ph

O

drawback: require simple structure, use many powerful agents: MeLi, LAH, MCPBA
H N N Ts TsNHNH2 MeLi SiMe3 O SiMe3 OH

O LDA SPh H SPh SPh HgCl2 LAH MsCl

OMs SPh H KOtBu

O

Li into structure
N N Ts Li N N Ts H Li MeLi N2, TsOH O TMSCl SiMe3

PhSSPh

O

CH3CN (aq)

MCPBA

LAH

CrO3

SiMe3 O

thioenol ether

5-b

C=S
i. hydrolysis ii. MCPBA

C=O
CH3O S OH H MCPBA CH3O O NMe2

OH H NMe2

5-c

C=N-Z
5-c.1

C=O
N OH

NOH
RaNi NH O

O KMnO4 / Al2O3

C=N-OH

i. RaNi ii. TiCl3 iii. KMnO4 / Al2O3 THL, 2001, 42, 4775.
OH H 3O + NH2

C(CH3)3
O

acetone rt, 5 min

C(CH3)3

5-c.2

C=N-H

H3O+

C

NH

H

JOC, 1970, 35, 858. JOC, 1972, 37, 2138.

5-d

C C

C=O
Hg2+ / H2O HgSO4 / H2O / H2O

Hg2+ Hg H2O

H 2O

OH
HgX OH H O

O HgX

not certain of which mechanism

5-e

C N

C=O
Ph CN Al (iBu)2H Ph C N Al H3O+ O Ph C H N O R-CH2-C H O R-CH-C H R' O R-CH-C R" R' R' X / n-BuLi
OH OH

R-CH2-C 5-e.1

1. DIBAL /

H3O+ Stenphen reduction mostly for Ar O C N Ar C H J.Org.Syn, 1925, 3, 1874.

2. HCl./ SnCl2 / Et2O 3.
OH OH

H3O+

5-e.2

5-e.3

OH OH

H R' X O R R N H3O+ O H n-BuLi

O R

N R'

H

CH3I

R CH2 C N

O R

N R' H3O+

R''MgBr O R R R' O H N R'' R'

H3O+

R R'

O R''

H

CH3I R''MgBr H3O+

JOC, 1973, 38, 2129.

O R

N H R'

5-f

C=C-X C=C-OR C=C-SR

C=O
H3O+ H+ OCH3 +OCH3 H2O CH3O OH - CH3OH O

H3O+

OCH3 Hg2+ CH3CN (aq) SCH3

O

Hg2+ / CH3CN (aq)

tpye:
O

OR enol ether X SR thioenol ether NR Cl enamine vinyl chloride
OH R OR R

reactivity: OR >> OR OR >> OR SR >>
OH O H R

SR SR SR
O H

use:
R

O OR H

5-g

C(OR)2

C=O
preparation: acid catalyst TsOH CSA (camphorsulfonic acid) Amberlite resin
OH OH O CH3OH acid cat HOCH2CH2OH acid cat O O O CH3O OCH3

a very common protecting group, deprotect back to ketone
OR OR SR SR O O S S H OEt C OEt OEt

Type: H OR R OR acetal

R R

OR OR

H R

OR OH

R R

OR OH hemiketal

H3O+ / solv (aq) Hg2+ / H3O+ H3O+ / solv (aq) Hg2+ / H3O+

OR OR

H3O+ / solv (aq) acid catalyst

ketal

hemiacetal

O S

O S

H3O+ CH3CN Hg2+ H 3O + O O R C H

unstable: only in aqueous acid stable in: basic solution: LDA, NaOMe RED: LiAlH4, NaBH4 organoMetal: RMgX, RLi

RMgX / H3O+

H

OEt C OEt OEt

RMgX

via:

OEt H C OEt

RMgX

R

OEt C OEt H

O R C H

5-h C-OH
1st alcohol

C=O
O R C H i. PCC ii. PDC iii. Collins reagent CrO3 - 2 Py iv. N-oxide v. DMSO / DCC vi. DMSO / HCl vii. DMSO / NHCO3 / NaI viii. Dess-Martin Reagent O
OCH3

THL, 1979, 5, 399. OH PDC 92 %
OCH3

O

CHO

H11C5

PDC CH2OH 70 %
OCH3

H11C5

CHO

AcO OAc I OAc O O

N+ O

RCH2OH

N O+

O R C H H O PhCH2OH
+

Pfitzner-Moffatt oxidation JOC, 1985, 50, 1332.

N OH

CH2Cl2, rt, 30 min JACS, 1991, 113, 7277. Ph O

S S O

S OH DMSO S DCC Can. J. Chem, 1978, 56, 1268. O O Ph

DMSO HCl

PhCHO

SynLett, 2002, 2041. H PhC H O S CH3 CH3

via: PhCH2

DMSO

Br

O

DMSO

NaHCO3 / NaI H 60 %

Synth. Commun., 1986, 16, 1343.

O 2nd alcohol R C R

TH, 1975, 2647. i. PCC TH, 1978, 2771. ii. PDC iii. Jones reagent (Na2Cr2O7-H2SO4 / acetone) iv. Moffatt oxidation (DMSO / Ac2O) v. Swern oxidation vi. DDQ / dioxane JOC, 1997, 62, 5246. vii. MnO2 / CHCl3 viii. Oppenauer zoidation Al(OiPr)3, acetone ix. K2Cr2O7 (s), rt solvent free THL, 2002, 43, 8843.

OH

DMSO Ac2O

O

+ Me2S + HOAc

O

O C CH3 O

O O C C OH H3C S CH3 O C R H

Moffatt oxidation
OH R C R DMSO ClCO-CO2H Et3N O R C R + Me2S + Cl, CO, CO2 + Et3NHCl

H3C S CH3 O H

R

Swern oxidation MeO DDQ dioxane HO

O 1st alcohol R C OH O R C OH Ag2O HO PCC (pyridinium chlorochromate) (Py-HCl-CrO3) most widely used PDC (pyridinium dichormate) (H2Cr2O7 + 2 Py) use 1 - 1.2 eq.
. N CrO3 HCl

MeO i. Jones reagent ii. KMnO4 HO

OH

O DDQ:

CN CN

O

Cl Cl

JOC, 1980, 45, 1596. aldehyde Al(OiPr)3 acetone O Synthesis, 1979, 537.

O

N+ H

2

Cr2O7- 2

Collins reagent: (CrO3 - 2 Py) Swern oxidation: (DMSO, oxalyl chloride, Et3N) 1. drawback: use 6 equivalent, a messy reaction drawback: react at low T Synthesis, 1981, 165. 2. must be very dry, fire easily; purify by CaH2 3. an old oxidizing material, isolated by Collin. JOC, 1977, 42, 1991. Ag2O: 1. a mild oxidizing agent 2. must be freshly prepared: NaOH into AgNO3 (aq) 3. may involve surface change, react with CO2, light

5-i

C-NX2

C=O
O

5-i.1 C-NH2

C=O
O

O O

Ph Ph Ph O Ph

O

N O

Ph Ph

Ph N OH Ph H3O+ Ph Ph O

i. Corey approach: subtituted-quinone // ii. Watt approach a. PhCHO // MCPBA // H3O+ b. ArPhO // MCPBA // H3O+ c. NBS // KOH // H3O+

H3O+

O

//

H3O+

Ph Ph

NH2 H3O+ PhCHO MCPBA Ph

NH2

O C H N

Ph

Ph O

NH2

NH2 Ph

PhCHO O N C Ph

Ph N C Ph Ph

MCPBA

Ph

o
N C Ph

NH - PhCHO

H3O+

Ph

H
O

5-i.2 C-NO2
i. Et3N // H3O+

C=O
NO2 O O O O O O H N O O

Et3N N O O

H3O+ O

Nef reaction Chem. Rev. 1955, 55, 137.
NO2

O TiCl3 pH1

ii. TiCl3 / pH 1 or 6 iii. SiO2 / NaOH // H3O+

McMurray reaction
O O TiCl3 pH6

pH 6: weak acid buffer, avoid interfere with ketal group

JACS, 1977, 99, 3861. THL, 1981, 5235.

NO2

iv. LDA / MoO5-Py- / HMPT // H3O+ v. NaOH // CH3OH / H2SO4 // H3O+ vi. KMnO4 / KOH

NO2 S Ph

1. NaOH 2.CH3OH H2SO4
KMnO4 O O

OMe S OMe Ph
O N Mn O O O

H3O+ S Ph
O N O O Mn O O

O

Synthesis, 1988, 379.

JOC, 1969, 34, 2438.

KOH NO2
N O O

O

- MnO2 - NO3-

O

5-j

C-Br

C=O
NMe2 NMe2

indrect: change to RC-OH followed by oxidation direct:
1. DMAPO / DBU / CH3CN 2. NaIO4 / DMF a new method 3. DMSO reagents: i. DMSO / AgBF4 ii. DMSO / ZnS THL, 1974, 917. JACS, 2003, 68, 2480. RCHBrMe
OH Br

Bull Soc. Jpn., 1981, 54, 2221. NaIO4 / DMF 150 C, 40 min
o

N O O 84 %
DMSO AgBF4

DMAPO

via:

N O

Br

THL, 2003, 44, 1375.

N,N-Dimethylaminopyridineoxide Ph H

RC(O)Me
OH O

Br R

DMSO / AgBF4 - AgBr R

O

S H - Me2S R

O

DMSO ZnS

5-k C-H
1. SeO2

C=O
O JCS, 1932, 1875. Ph CH3 Se SeO2 Ph

O O H

2. DDQ / TFA. O 3. I (3 eq.) O OH O

Synthesis, 1979, 537. Ar Ph-F / DMSO a select oxidant JACS, 2001, 123, 3183. CH3 N H CH3

DDQ Ar N CH2

TFA Ar N H O O CHO

DDQ Ar CF3 N O O

H3O+ CF3 Ar N H CHO

C C 6- a RC CH b RCH2-SO2Ph c C C dC C e RCH(CO2H)-CH3 f -C(O)-CH3
R C C H

g h i

O X

O O

CRR'=CHX
n-BuLi R Br Li n-BuLi R LiBr OH R C C C H R II Pd I Ph R C C H Pd C C R Ph

R C C R' R C C CHOH R

H

6-a

RC CH
i. n-BuLi / RX

RC CR'
n-BuLi: not MeLi, or t-BuLi, fire easily RX: R-Br, R-TOS, RCHO, RC(O)R

R C C H

R C C H

O R C H R C C Li

ii. (Ph3P)2PdCl2, CuI, Et2NH / PhI

R C C H

R C C Ph Ph-I

Pd

Pd

II

THL, 1975, 4467.
Cl

R C C Ph

iii.

N Li

OMe

R C C H

R C C Ar

Cl OMe

N H

?+

addition steric
?R C C Li

C C R

steric base, prevent Nu attack

OCH3

OMe

iv. CuI, NaI, Na2CO3, R

C

C

CH2Cl

R

C

C

H

Cl CH2 C

C

R' R C C CH2 C C R'

Synthesis, 2000, 691.

6-b

RCH2-SO2Ph

RC CR'

R CH2SO2Ph sulfone

n-BuLi RCHO

SO2Ph R C C R' OH

Ac2O

SO2Ph R C C R' OAc

SO2Ph -HOAc R C C R' H

KOtBu

R C C R'

- PhSO2H

n-BuLi / R'CHO // Ac2O // KOtBu

sulfonic acid: PhSO3H; sulfinic acid: PhSO2H; sulfenic acid: PhSOH

6-c

C C

C C
JACS, 1975, 97, 891.
R H H

KAPA K+N-HR

C H R

limit: continueous CH2, not branch
R C C C CH2 CH2-CH2 CH2 CH3 H allene

i. move to terminal

use: KAPA

NH2 NHK

propargylic
CH2 CH2 CH3 R C C C C CH2 C CH

ii. protect - deprotect

use: Co (CO)8 // Fe(NO3)3, EtOH Fe(NO3)3: weak oxidizing agent

H R C C C C H

R C C C C

CH2C C

K

irreversible at the final step
H 1.B2H6 2.HOAc

HO C CH Co2(CO)8 HO HO HO C C H

HO CO

C Co

C Co

CO CO CO CO CO HO

choose B2H6, not H2/cat: Co poison cat
C CH Fe(NO3)3 EtOH HO H

6-d

C C

C C

use: i. Br2 / CCl4 // KOtBu ii. Br2 // KOH Ph Ph Ph Ph
HO

CO Co Co CO CO CO CO CO

JACS, 1941, 63, 1180.

6-e

R CH CH3 CO2H

R C C H

R CH CO2H

CH3

Pb(OAc)4, LiCl Br2/CCl4 R CH CH2 KOtBu KOtBu CH3

R C C H

use: Pb(OAc)4, LiCl // KOtBu // Br2/CCl4 // KOtBu in fact: convert to C=C firstly Cl-

OAc R C C O Pb OAc OAc O

Cl R C CH3 - CO2, - Pb (OAc)2, -OAc1.NaBH4 1.Br2/CCl4 2.KOtBu O 3.CrO3.2Py

O CO2H

LiCl Pb(OAc)4

O Cl

H

2.KOtBu

HO

involved: reduction NaBH4, oxidation CrO3.Py, prevent ?-H attacked by Br2

6-f

O R C CH3
i. NaBH4, H3O+, Br2, KOtBu

R C C H
O R C CH3 NaBH4 OH R C CH3 H 3O + R C CH2 Br2 RCHBrCH2Br KOtBu R C CH

ii. NH2OH, NaNO2 / H2SO4 // Ac2O / DMAP
O

O R C CH3

NH2OH R C N OH CH3

H2SO4

R C N OH2 CH3

NaNO2

O R C N N O C H H H

Ac2O DMAP

OAc R C N N C H N O H R C CH

JOC, 1979, 44, 4116.

N

iii. LDA, ClPO(OEt)2
O

O R C CH3

LDA ClPO(OEt)2

OPO(OEt)2 R C CH H LDA R C CH N DMAP: 4-N,N-Dimethylaminopyridine German invention, as acylating agent N C O

CH3

JOC, 1980, 45, 2526.

vinyl phosphate

mixture of Ac2O / DMAP:

LDA: Li N(iPr)2, ignored a long time, re-introduced by Michigan State U. became famous, appeared every week

6-g

TsNHNH2

O

O

O
THL, 1967, 3943.

O

O

N NH Ts

O

N N Ts

O

Ts-

N2

O

use: TsNHNH2 / EtOH, heat

H2O2

O CH3 CH CH2 (MVK)

Na / NH3(l)

O

Robinson Annulation O

OH

6-h

Cl

O

R

HO LiNH2 / NH3 (l)

use: LiNH2 / NH3 (l) / R-X

Cl

O

RX

R

HO

6-i.

R R'

C C

X

R C C R'

JACS, 1955, 77, 3293. JACS, 1958, 80, 4599.

Ar i. NaOEt (when X = Br) Ar' Me Ph

Br H OSO2CF3 H

NaOEt

Ar

C

C

Ar'

Me via: Ph C

via:

Ar Ar'

Br ?

ii. BuLi (when X = -OSO2CF3)

BuLi

Me

C

C

Ph

JOC, 1978, 43, 364.

C C 7- a CH-CX b CH-CH 7- a
C H
C C H OH C C H OMs C C H OAc C C H OC(S)SMe C C H I

c CX-CY d
X C C

f g

C O C C

i C C j C-OH

e -C(O)-CH3
C C

h C CH

C X

C

C OH

use:

i. p-TSOH.H2O or CSA ii. weak acid: HOAc; HCO2H; H2C2O4 iii strong acid: H2SO4; HCl iv. ArSeCN, PBu3 // MCPBA
HO

OH Ph MsCl MsO

(CO2H)2 / benzene

H Ph

applied for reactions: without rearrangement; no regiosiomer p-TSOH major + minor

Dean-Stark RONa
or KOtBu

OH

use base: i. RONa; ii. KOtBu use: heat use: heat
N N

H O O CH3

i. n-BuLi ii. CS2
OH

heat

S O SMe

heat

iii. CH3I
I DBN

syn elimination

use base: DBN

compare:

OH

H2SO4

C C H NH2

i. CH3I / Ag2O // heat (Hoffman elimination) ii. HCHO / HCO2H // H2O2 // heat (Cope elimination)
CH3I (excess) NH2 HCHO HCO2H

NMe3I

-

H Ag2O H H 2O 2

NMe3 OH O NMe2

-

heat

NMe2

heat

7- b C
H

C H
i. DDQ ii. chloronail

C

C
NC NC O O Cl Cl Cl Cl O O Cl Cl

OH MeO OAc

NO2 Se N MCPBA heat

MeO

OAc CO2Me

mechanism: Ph-Se-CN

:PBu3

RCH2CH2-OH Ph-Se-PBu3 MCPBA heat TBDMS O . . O RCH=CH2

MeO2C

OAc CO2Me DDQ O

MeO2C

OAc

RCH2CH2-O-PBu3 TBDMS O H . . O MeO

MeO

DDQ

iii. Pd-C; or Ni; Pt, Rh

Pd-C

23oC, 14h, 88%

O

THL, 1991, 3679.

7- c

C X
C C

C X

C

C
C C
OH OH CSCl2 C O C O S

base

C C

O S P

OR OR OR

i. CSCl2 /

N

OH OH

P Ph

N

thiophosgene

thionocarbonate

or: ?
OH OH P(OMe)3 CSCl2 O S P O OR OR OR

O

ii. CSCl2 / P(OMe)3

HCO3H

C Br

C Br

i. Zn / acetone ii. In / MeOH JCS.CC, 1998, 2113.

application: i. protect alkene: via Br2 // Zn ii. purify compound
CCCCC 36 oC CCCC=C 31 oC CCCC C 148 oC Cl Cl Sn Et H

C

C

OMs OMs C C

NaI / Zn (Cu)

C via: I

C I OH Et H3C I H CH3 POCl3 Py

OH I

POCl3 / py // Sn

Et H3C

Cl P Cl O H CH3 I

O

OAc AcO AcO AcO Br O Zn HOAc OAc OAc

OAc O

JOC, 1978, 43, 364.

C Br

C OAc

Zn / HOAc

7- d
7-d.1

X C C O C C

C

C
H O H WCl6 RLi H O H LiPPh2 SN2 H OH H PPh2 CH3I H OH H PPh2 CH3 H O H H CH3 P H Ph Ph H H

C

C

i. WCl6 / RLi ii. LiPPh2 / CH3I iii. Na

product retention product inversion
Cl Na O

oxaphosphetane

(special structure):

R

H R C C CH2 CH2 CH2 OH H

7-d.2

S C C
use: (EtO)3P

C

C
S R1 R2 (EtO)3P R1 R2 Synthesis, 1977, 1134.

7- e

O C CH3 C C
HO Pregnenolone (a female hormone)

O TsNHNH2 HO O

N NH n-BuLi

Ts

HO Li N NH Ts N N Ts H 2O Br2

Br S CH3

use: TsNHNH2 // n-BuLi

JACS, 1972, 94, 7748.
TsNHNH2 O EtOH TsNHN n-BuLi

CH3-S-S-CH3

JOC, 1977, 42, 1079.

7-f

C

O O

C

C RC CR'
not CO2Me O H O Et CN H O

7-f.1 RC

+

Ph3P CH CO2Me not

O PPh3 + H C CO2Me difficult to prepare

i. Wittig Reaction 1953 discover (olefination reaction) ii. Phosphonate Wittig Reaction (Horner-Emmons Modification) iii. Silyl Wittig Reaction (Peterson Reaction) THL, 1981, 2751. JOC, 1968, 33, 780.

use: Ph3P-CHR' use: (RO)2PO-CHR'

via: betaine, oxaphosphetane (NMR) RO = MeO-, EtO-

+ Ph3P CH Et
CN

PPh3 + O Et expensive unstable ylid gives cis (Z) stable ylid gives trans (E)

water soluble, removed by extraction (comparison: O=PPh3 highly soluble in organic solvent)

+

PPh3

Synthesis, 1984, 384. Me3SiCHR-Li+ - + Ph3SiCH2 Li === Ph3SiCH2Br + n-BuLi (exchange) Me3SiC-H-MgBr === Me3SiCH2Cl + Mg (metal reduction) Ph3SiC-HCH2Ph === Ph3SiCH=CH2 + PhLi (addition to vinylsilane) Me3SiC-HCO2Et === Me3SiCH2CO2Et + Li (metalation) Me3SiCH=PPh3 === Me3SiCH2PPh3+ X- + KH R
R

Me3SiC-H-MgBr O H O SiMe3 R R R R R R

not good for Ph3P=CH2 function as base: O N C S R PPh3 + S C R N C R R R R R C C R Ph(OAc)4

THL, 1973, 3947.
R R C NHNH2 R2CO R R N N C PPh3 C S R R

C

O

N2H4

C N

N C

H 2S

iv. CH2(ZnI)2 Synlett, 1988, 12, 1369.

CH2(ZnI)2 O CH2
R R N C S N C R R PPh3 R R C

v. CH2CHBr2, Sm, SnI2 / CrCl3, THF Chem. Lett, 1995, 259.

R
O

O

R

O Ph O S CH2 N Me

O OH S

Ph NMe Al (Hg)

vi. Sulfoximide (Johnson C.) vii. Grignard reagent:

use: Ph

S

CH2 Li

// Al (Hg) 1. TMSCH2MgCl

N. R. if use: Ph3P-CHR' due to steric hindrance

N Me

use: TMSCH2MgCl
O H

THL, 1988, 4339. THL, 1973, 3497.

2. NaOAc, AcOH

H

via:

H O C R R'

SiMe3

methylenation advantages over the Wittig: 1. by-products are more easily removed, 2. reaction suffers less from steric effects.

7-f.2

RC

O

RC

CR
R O R R not for Wittig, ylid unstable R C O N 2H 4 R R N C S N C R R C NHNH2 R2CO R R N N C PPh3 C S R R R R C N N C R R H 2S H R R R PPh3 + S C R C N S

H N C R R

R R

Ph(OAc)4

i. use: N2H4 / H2S / Pb(OAc)4

PPh3

R R

R C C R

C

O

O N2H4

O

O

1. H2S 2. Pb(OAc)4 3. H3O+ S

O

O

1. H2S 2. Pb(OAc)4 S

O P(OEt)3 N N N N N N

O TiCl3 Zn-Cu Ti (II) O O via: R C C R

O

N N

N N

N N

O

O

O

S

N N

S

N N

S

O

R C

C

R

O

O

ii. McMurry Coupling

TiCl3-LiAlH4 / THF JACS, 1974, 96, 4706. TiCl3 / Mg BASF, 1973, 2147. TiCl4 / Zn Chem. Lett, 1973, 1041. TiCl4 / K JOC, 1978, 43, 3253.

O commercial available butene side product (trimer)

7- g

C

C

C

C

not use H2 / Pt: might convert to alkane R H H R

form trans alkene:

i. Li / NH3; or other IA metals ii. Li / EtNH2 iii. LiAlH4 / THF

R C C R

C C

form cis alkene:

i. H2 / Ni2B (P-2 catalyst) ii. H2 / Pd-CaCO3 (Lindlar catalyst) iii. H2 / Pd-BaSO4 iv. B2H6 / HOAc (Diborane) v. N2H2 vi. HCHO / Pd-C / Et3N

Et

C C Me

Et H

Me C C H H H Ph C C CHO JOC, 1980, 45, 4926.

Ph C C

CHO

HCHO Pd-C Et3N

C

CH R BH 2 (Syn)

C H R

C H B R R Br B CN C R H C H Br-CN

Br C H R C B

H

CN-

Br C H C B R

H CN R

7- h

C

CH

C

C R

all form trans alkene:
H C CH R H

Br C H C R

R H R H

H B R CN

i. R2BH / Br-CN (hydroboration) ii. DIBAL / n-BuLi / CH3I (hydroalumination)
R C C H

Syn elimination

DIBAL

R H

C

C

H AlR2

n-BuLi

R H R H

C C

H Li

CH3I

R H

C

C

H CH3

iii. Cp2ZrClH / RX (hydrozirconation)

R C

C

H

Cp2ZrClH

C

C

H ZrCP2 Cl

R'X

R H

C

C

H R'

7-i C

C

C

C

application: protecting group not for
C H C OH

double bond might move
CO2Et CO2Et 200 oC CO2Et CO2Et COOH 180C CH2 OH LAH OH PhSO2Cl NaBr CO2H Br Br

via dihalide

C=C

C C X X

C=C

EtO2C CO2Et CH2 CO2Et

via halohydrin via epoxide

C=C C=C C=C

C C H X O C C C C

C=C C=C C=C Ph

CO2Et RONa

1. OH2. H3O+

via diene-olefin addition via diradical Ph

Ph

JACS, 1998, 100, 877.

7-j

C-OH

C

C
NO2

OH

MnO2 Ph3P CH3 BrMTBD NO2 Synlett, 2002, 215.

N N N CH3

MnO2 / Ph3P CH3 Br- / MTBD

in situ alcohol oxidition Wittig rxn

MTBD

C-X 8- a C-OH b C-NH2 8-a
C-OH C-X
1.

c C=O d C(O)Z e C-H
O O Chem. Rev., 1996, 96, 1737. S N F S JOC, 1993, 58, 3800. O O O

CHCl2 O N 1. CF3CHFCF2NEt2 OH 2. HOAc / iPrOH OH H
N Cl N

8-a.1

C-OH

C-F

2. F3S-NEt2 (DAST) $ 500 / 125 g

CH3

CH3 S O 3. CF3CHFCF2NEt2 (Ishikawa reagent)
Cl

O S O

OH F NHCOCHCl2 NMe2 via: Me Et O H Cl

1. SOCl2

Me
N

HCONMe2
Cl N Cl

Me Et

H Cl

N Cl N

8-a.2

C-OH

C-Cl

2. HCONMe2 /

Et
Cl

3. COCl2 / DMF 4. CCl4 / PPh3 5. HCl / ZnCl2

JOC, 1983, 48, 2625.

Org.Lett, 2002, 4, 553.

OH

CCl4 PPh3 HCl OH

Cl Can.J.Chem, 1968, 46, 86. Cl JACS, 1938, 60, 2497.

6. HCl fit for 3rd alc, directly

8-a.3

C-OH
1. HBr 2 PBr3

C-Br
fit for Can. J. Research, 1932, 7, 464. OH OH JOC, 1980, 45, 1638. PI3 CH3I JCS, 1905, 87, 1592. OTBS BnO Me OH PPh3 / I2 96 % 1st

ZnCl2

alc

TMSBr Br OH

3. TMS-Br (HMDS / PyH Br3)

good for 3rd alc prepare in situ

Si Si (HMDS)

N + Br3 H

Si

Br

8-a.4

C-OH
1. HI

C-I
CH3OH

(PyH Br3) PBr3

TMS-Br

2. PI3 2. PPh3 / I2

$ 35 / 1000 g $ 65 / 500 g $ 80 / 50 g

JACS, 2003, 125, 1458.

OTBS BnO Me I

3. TsCl / C6H6 // NaI Intermediate. Org. Chem, 1988.

PBr3 PI3

8-b C-NH2

C-X
NH2

C-NH2

C-F
for aromatic amine

Cl

Cl

NaNO2 HCl, HBF4

Cl

N2BF4 Cl

F Cl Cl

NaNO2 / HCl / HBF4 /

8-c C=O
C=O

C-X
C-F
CF2Br2 / Zn O

CF2Br2 / Zn 58 %

F F JCS.PT I, 1993, 335.

8-d C(O)Z 8-d.1 8-d.2
C(O)Z

C-X
O Cl RhCl(PPh3)3 Cl

C-Cl
O OH

C(O)Z

C-Br

R

C

1. AgNO3/KOH 2. Br2

R

Br

Chem Rev., 1956, 56, 219.

Ber. 1942, 75, 296.

8-e

C-H
C-H
i.

C-X
C-F
N O F

8-e.1

Chem. Rev., 1996, 96, 1737.

PhCH2C(O)CH3

F+

PhCHC(O)CH3 F Ar F

OH R CH3

F-TEDA-BF4 Ar Me-CN, TEDA=triethylenediamine

OH F R 55-90 %

S

O

ii. F-TEDA-BF4 iii. iv. v.

JCS.CC, 1994, 149. JOC, 1988, 53, 2803. R HF F electrolysis 1.4-1.6 V anode: Pt or Ni O R R '' R

F2-N2 CFCl 3-CHCl3
adamantane 90 % 1. regioselective fluorination at the more substituted positions 2. electrophilic in nature

F2-N2 / CFCl3-CHCl3 HF / electrolysis already industrilized NF3O / TBAH / CH3CN

R = CH3CO, COCF3, CCl3, NO2 O H R' NF3O TBAH / CH3CN rt, 12h R O R '' O F R'

THL, 2003, 44, 2799. TBHA: Tetrabutylammoniumhydroxide

8-e.2

C-H

C-X

X = Cl, Br, I O O NBX R1 H R2 R3 Mg(ClO4)2 R1 X R2 R3 NBX:
O N X

O

O

O

NBX / Mg(ClO 4)2

JOC, 2002, 67, 7429.

X = Cl, Br, I

8-e.3

C-H

C-I
I2 / HNO3 JACS, 1917, 39, 437. I2 / HNO3

I 86 %

C-CH3 9- a C-X 9-a
C-X C-CH3
Me3Al Br CH2Cl2 98 %

(CH3)3Al

bridgehead methylation
Organomet. Chem. Rev., 1996, 4, 47.


相关文章:
有机化学之官能团性质总结_图文
有机化学官能团性质总结 - 类别 通式 官能团 代表物 分子结构结点 卤素原子直接与烃基 结合 β-碳上要有氢原子才 能发生消去反应 羟基直接与链烃基结 合, O...
有机化学中官能团的顺序
有机化学官能团的顺序 - 注意:有了官能团的优先次序表,我们就可以对多官能团有机物进行命名。当一个有机物分子中出现两种 或者两种以上官能团时,我们就把序号排...
有机化学官能团高效记忆(表格)
有机化学官能团高效记忆(表格) - 高中常见有机化合物结构与性质总结 物质类别 烷烃 特征结构(官能团) C C 断键位置 C H 反应类型 试剂条件 X2,光照 反应产物...
官能团的性质及有机化学知识总结
官能团的性质及有机化学知识总结_化学_自然科学_专业资料。有机物官能团与性质 ...[有机物间的相互转化关系] 图 1: 酯 化水解 酯酯 水解化 醇消水 卤代烃...
有机化学官能团
有机化学官能团 - 1、电子式 2、结构式 3、线键式 4、实验式 2、按官能团分类 表 l 一 1 有机物的主要类别、官能团和典型代表物 同分异构体: (碳链...
高中有机化学官能团的衍变规律
高中有机化学官能团的衍变规律 - 官能团的衍变规律(专题) 一、课前检测 二、学习目标 掌握官能团之间的变化 三、自主学习 1、 官能团的引入和转换 (1)C=C 的...
有机化学官能团性质整理
有机化学官能团性质整理 - 苏教版高二有机化学官能团性质整理 分类:烷、烯、炔、苯、卤化烃、醇、酚、醚、醛、酮、羧酸、酯、氨基酸 由结构(官能团)推测性质:...
高中有机化学常见官能团
高中有机化学常见官能团 - 烷烃——无官能团: 1.一般 C4 及以下是气态,C5 以上为液态。 2.化学性质稳定,不能使酸性高锰酸钾溶液,溴水等褪色。 3.可以和卤素...
官能团的性质及有机化学知识总结大全
官能团的性质及有机化学知识总结大全 - 有机物官能团与性质 [知识归纳] 有机物 烷烃 烯烃 烃 炔烃 苯及其同 系物 卤代烃 烃的衍生物醛 羧酸 酯 葡萄糖 重要...
有机化学官能团知识小结
有机化学官能团知识小结_理化生_高中教育_教育专区。非常有用的。 有机物官能团等知识小结 1.有机物的官能团和它们的性质: ?官能团是钥匙,它能打开未知有机物对...
更多相关标签: