当前位置:首页 >> 化学 >>

有机化学官能团相互转化

5-f C=C-X

C=O

C=C-OR H3O+

C=C-SR Hg2+ / CH3CN (aq)

H3O+
OCH3 Hg2+
CH3CN (aq) SCH3

O O

H+ OCH3

H2O

+OCH3

CH3O

OH - CH3OH

O

tpye: X

OR enol ether SR thioenol ether NR enamine Cl vinyl chloride

reactivity:

OR >>

SR

OR

OR

SR

OR >>

SR >>

SR

use: O

OH

OR

OH O

O

R

H

R

OR

R

H

R

H

5-g C(OR)2

C=O

a very common protecting group, deprotect back to ketone

OR OR

H3O+ / solv (aq)

SR SR

Hg2+ / H3O+

O O

H3O+ / solv (aq)

S

S

Hg2+ / H3O+

OEt H C OEt
OEt

RMgX / H3O+

OR

H3O+ / solv (aq)

OH

OR

acid catalyst

OH

OO

H3O+

CH3CN

SS

Hg2+

H3O+

OEt H C OEt

RMgX

OEt

O
O O
RC H

preparation: acid catalyst
TsOH CSA (camphorsulfonic acid) Amberlite resin

CH3OH acid cat
O HOCH2CH2OH acid cat

CH3O OCH3 OO

Type: H OR R OR
acetal

R OR R OR
ketal

H OR R OH
hemiacetal

R OR R OH
hemiketal

unstable: only in aqueous acid stable in: basic solution: LDA, NaOMe
RED: LiAlH4, NaBH4 organoMetal: RMgX, RLi

via:

OEt HC

RMgX

OEt

OEt R C OEt
H

O RC
H

5-h

C-OH
1st alcohol

C=O

O RCH
AcO OAc I OAc

i. PCC ii. PDC iii. Collins reagent CrO3 - 2 Py iv. N-oxide v. DMSO / DCC vi. DMSO / HCl vii. DMSO / NHCO3 / NaI viii. Dess-Martin Reagent

O CH2Cl2, rt, 30 min O JACS, 1991, 113, 7277.

O

OH PDC O

92 %

OCH3

N+ O

RCH2OH

THL, 1979, 5, 399. CHO H11C5

OCH3 N O+

O RCH +

H

S

OH DMSO S

O

S

DCC

S

Can. J. Chem, 1978, 56, 1268.

Br

O Ph DMSO

O

O NaHCO3 / NaI H

O Ph O Synth. Commun., 1986, 16, 1343.

60 %

PDC CH2OH
70 %

H11C5

CHO

OCH3
N OH

Pfitzner-Moffatt oxidation JOC, 1985, 50, 1332.

DMSO PhCH2OH HCl

SynLett, 2002, 2041.

PhCHO H

CH3

via: PhCH2 DMSO

PhC O S CH3

H

2nd alcohol
1st alcohol aldehyde

O RCR

i. PCC TH, 1975, 2647.

ii. PDC

TH, 1978, 2771.

iii. Jones reagent (Na2Cr2O7-H2SO4 / acetone)

iv. Moffatt oxidation (DMSO / Ac2O)

v. Swern oxidation

vi. DDQ / dioxane

vii. MnO2 / CHCl3 JOC, 1997, 62, 5246.

viii. Oppenauer zoidation Al(OiPr)3, acetone

ix. K2Cr2O7 (s), rt solvent free

THL, 2002, 43, 8843.

O R C OH

i. Jones reagent ii. KMnO4

O R C OH

Ag2O

PCC (pyridinium chlorochromate) (Py-HCl-CrO3) most widely used

.
N CrO3 HCl

PDC (pyridinium dichormate) (H2Cr2O7 + 2 Py) use 1 - 1.2 eq.

N H

+

2

Cr2O7- 2

OH

DMSO

Ac2O Moffatt oxidation

OH

DMSO

RC R

ClCO-CO2H Et3N

Swern oxidation

O + Me2S + HOAc

O RC R

+ Me2S + Cl, CO, CO2 + Et3NHCl

O O C CH3
H3C S CH3 OH

OO C C OH O
H3C S CH3 OH C RR

MeO

OH

HO

DDQ dioxane

MeO HO

O

O

CN

Cl

DDQ:

CN

Cl

JOC, 1980, 45, 1596.

O

Al(OiPr)3

HO

acetone O

Synthesis, 1979, 537.

Collins reagent: (CrO3 - 2 Py) 1. drawback: use 6 equivalent, a messy reaction 2. must be very dry, fire easily; purify by CaH2 3. an old oxidizing material, isolated by Collin.

Swern oxidation: (DMSO, oxalyl chloride, Et3N) drawback: react at low T Synthesis, 1981, 165.

Ag2O:

JOC, 1977, 42, 1991.

1. a mild oxidizing agent

2. must be freshly prepared: NaOH into AgNO3 (aq)

3. may involve surface change, react with CO2, light

5-i C-NX2

C=O

5-i.1 C-NH2

C=O

i. Corey approach: subtituted-quinone // H3O+

ii. Watt approach a. PhCHO // MCPBA // H3O+ b. ArPhO // MCPBA // H3O+ c. NBS // KOH // H3O+

O CH N

O

O

O

Ph

O

O

Ph

O // H3O+ Ph

NH2

Ph

H3O+ Ph

NH2 O Ph

N

Ph Ph

O

Ph

N

Ph OH

H3O+ Ph Ph

O

Ph

PhCHO Ph

NH2

O

MCPBA

Ph NH2 PhCHO

Ph

O

N C Ph

Ph

MCPBA

N C Ph

Ph NH H3O+ - PhCHO

Ph

o

N C Ph

H
Ph O

5-i.2 C-NO2
i. Et3N // H3O+

C=O
Nef reaction Chem. Rev. 1955, 55, 137.

ii. TiCl3 / pH 1 or 6

McMurray reaction

iii. SiO2 / NaOH // H3O+ JACS, 1977, 99, 3861.

NO2

O

O

O

TiCl3

NO2

pH1

O

Et3N H
NO O

H3O+
NO O
O

OO NO2

TiCl3 pH6

O O pH 6: weak acid buffer, avoid interfere with ketal group
O

iv. LDA / MoO5-Py- / HMPT // H3O+ THL, 1981, 5235. v. NaOH // CH3OH / H2SO4 // H3O+ Synthesis, 1988, 379.

NO2 1. NaOH

S Ph

2.CH3OH H2SO4

OMe

H3O+

S

OMe

O S

Ph

Ph

vi. KMnO4 / KOH JOC, 1969, 34, 2438.

KO H NO2

KMnO4 N O-
O-

O NO

O

O

Mn

O

O

O

NO

O

O

Mn

- MnO2 - NO3-

O

O

O

5-j C-Br

C=O

indrect: change to RC-OH followed by oxidation

direct: 1. DMAPO / DBU / CH3CN

Bull Soc. Jpn., 1981, 54, 2221.

2. NaIO4 / DMF a new method

Br

NaIO4 / DMF 150 oC, 40 min

3. DMSO reagents: i. DMSO / AgBF4

THL, 1974, 917.

ii. DMSO / ZnS JACS, 2003, 68, 2480.

O THL, 2003, 44, 1375. 84 %

DMSO
RCHBrMe AgBF4
OH Br DMSO
ZnS

RC(O)Me
OH O

NMe2

NMe2

N DMAPO O

via: N O

N,N-Dimethylam inopyridineoxide

Ph

H

Br R

DMSO / AgBF4 - AgBr

S O

R

H

- Me2S

O R

5-k C-H

C=O

1. SeO2

JCS, 1932, 1875.

O Ph
CH3

SeO2 Se

O Ph
O
H

2. DDQ / TFA. Synthesis, 1979, 537.

O

OH

I

3.

O Ph-F / DMSO

DDQ

TFA

DDQ

H3O+

Ar N CH3 H

Ar N CH2

Ar N HO

Ar N

CF3

O

CF3

Ar

N CHO H

O

O

(3 eq.) O

a select oxidant

CH3

JACS, 2001, 123, 3183.

CHO

CC

6- a RC CH b RCH2-SO2Ph cC C

dC C e RCH(CO2H)-CH3 f -C(O)-CH3

g
OO

hX

O

i CRR'=CHX

6-a

RC CH

RC CR'

i. n-BuLi / RX

n-BuLi: not MeLi, or t-BuLi, fire easily RX: R-Br, R-TOS, RCHO, RC(O)R

ii. (Ph3P)2PdCl2, CuI, Et2NH / PhI

Cl

iii. N

OMe

Li

steric base, prevent Nu attack

RC C H RC C H

R C C R'
R C C CHOH R

n-BuLi H
n-BuLi RCCH

R Br

Li

R

LiBr

O R C C Li R C H

OH RCC C H

R

RCC H

R C C Ph

THL, 1975, 4467.

RCCH

R C C Ar

II Pd
Pd I
Ph-I
Ph

RC C H

Pd C C R Ph

II Pd
R C C Ph

Cl

N

H

OMe

addition steric

?+

C CR

?- R C C Li

OCH3

OMe

iv. CuI, NaI, Na2CO3, R C C CH2Cl

Cl CH2 C C R'

R C CH

R C C CH2 C C R'

Synthesis, 2000, 691.

6-b RCH2-SO2Ph

RC CR'

n-BuLi / R'CHO // Ac2O // KOtBu

R CH2SO2Ph sulfone

n-BuLi RCHO

SO2Ph R C C R'
OH

Ac2O

SO2Ph R C C R'
OAc -HOAc

SO2Ph
R C C R' H

KOtBu

R C C R'

- PhSO2H

sulfonic acid: PhSO3H; sulfinic acid: PhSO2H; sulfenic acid: PhSOH

6-c C C

CC

JACS, 1975, 97, 891.

i. move to terminal use: KAPA NH2 NHK

ii. protect - deprotect use: Co (CO)8 // Fe(NO3)3, EtOH Fe(NO3)3: weak oxidizing agent

6-d C C

CC

use: i. Br2 / CCl4 // KOtBu

ii. Br2 // KOH

Ph

JACS, 1941, 63, 1180.

Ph Ph

6-e R CH CH3
CO2H

RCCH

KAPA

CH

limit: continueous CH2, not branch

R HH

K+N-HR R

H RCC CC
H

CH2 CH2 CH3

propargylic
RCCCC

R C C C CH2 CH2-CH2 CH2CH3
H allene

CH2C CH

R C C C C CH2C C K

irreversible at the final step

HO

Ph

HO

HO C CH
Co2(CO)8

HO

HO

H CC

CO Co Co CO CO CO CO CO

H

HO

CC

CO Co Co CO CO CO CO CO

1.B2H6 2.HOAc

choose B2H6, not H2/cat: Co poison cat
HO C CH

Fe(NO3)3

EtOH HO H

R

CH

CH3

Pb(OAc)4, LiCl R

CH

CO2H

KOtBu

CH2 Br2/CCl4 KOtBu

RCCH

use: Pb(OAc)4, LiCl // KOtBu // Br2/CCl4 // KOtBu in fact: convert to C=C firstly
O

CH3

OAc

R C C O Pb OAc

Cl-

O

OAc

Cl
R C CH3 - CO2, - Pb (OAc)2, -OAc-

LiCl Pb(OAc)4 O
CO2H

1.NaBH4

H

HO

Cl

2.KOtBu

involved: reduction NaBH4, oxidation CrO3.Py, prevent ?-H attacked by Br2

1.Br2/CCl4

2.KOtBu 3.CrO3.2Py

O

O

6-f

R C CH3

RCCH

i. NaBH4, H3O+, Br2, KOtBu

O R C CH3 NaBH4

OH R C CH3

H3O+ R C CH2 Br2 RCHBrCH2Br KOtBu R C CH

ii. NH2OH, NaNO2 / H2SO4 // Ac2O / DMAP
O
iii. LDA, ClPO(OEt)2
O

O R C CH3

NH2OH

R C N OH CH3

JOC, 1979, 44, 4116.

H2SO4

R C N OH2 CH3

NaNO2

O

RCNN O

HC H H

Ac2O DMAP

OAc

RC N N

C

O

HH

R C CH

O R C CH3

LDA

OPO(OEt)2 R C CH

LDA

ClPO(OEt)2

H

JOC, 1980, 45, 2526. vinyl phosphate

N

N

R C CH

DMAP:

N

4-N,N-Dimethylaminopyridine

German invention, as acylating agent

N C O CH3
mixture of Ac2O / DMAP:

LDA: Li N(iPr)2, ignored a long time, re-introduced by Michigan State U. became famous, appeared every week

6-g

OO

O

use: TsNHNH2 / EtOH, heat THL, 1967, 3943.

O

O

TsNHNH2
N O
NH Ts

H2O2
O

O CH3 CH CH2
(MVK)
Robinson Annulation O

N

N

O

Ts

N2

O

Ts-

Na / NH3(l)

OH

6-h Cl

O

R

HO

use: LiNH2 / NH3 (l) / R-X

Cl

LiNH2 / NH3 (l)

O

RX

R

HO

R

X

6-i.

CC R'

R C C R'

JACS, 1955, 77, 3293. JACS, 1958, 80, 4599.

i. NaOEt (when X = Br)

Ar

Br

NaOEt Ar C C Ar'

Me via:

C

via: Ar

Br

Ar'

H

Ph

Ar'

?

Me ii. BuLi (when X = -OSO2CF3)
Ph

OSO2CF3 H

BuLi

Me C C Ph

JOC, 1978, 43, 364.

CC
7- a CH-CX b CH-CH

c CX-CY
X
d CC
e -C(O)-CH3

f CO g CC h C CH

iC C j C-OH

7- a C C
HX

CC

CC H OH

use:

i. p-TSOH.H2O or CSA ii. weak acid: HOAc; HCO2H; H2C2O4

iii strong acid: H2SO4; HCl

CC

iv. ArSeCN, PBu3 // MCPBA

H OMs use base: i. RONa; ii. KOtBu

HO

CC H OAc

use: heat

CC

use: heat

H OC(S)SMe

CC HI

use base: DBN N N

CC H NH2

i. CH3I / Ag2O // heat (Hoffman elimination) ii. HCHO / HCO2H // H2O2 // heat (Cope elimination)

OH (CO2H)2 / benzene
Ph Dean-Stark

MsCl

MsO

RONa
or KOtBu

i. n-BuLi ii. CS2
OH
iii. CH3I

S

heat

O SMe

C C applied for reactions: without rearrangement;
H OH no regiosiomer
Ph

OH p-TSOH

+

major minor

H

O

heat

O CH3

syn elimination

I DBN

compare:

OH H2SO4

CH3I (excess) NH2
HCHO
HCO2H

NMe3I- Ag2O NMe2 H2O2

H NMe3 OH-
HO NMe2

heat heat

7- b

CC

C

HH

i. DDQ ii. chloronail

C
O NC
NC O

iii. Pd-C; or Ni; Pt, Rh

Cl O
Cl Cl
Cl O
Pd-C

MeO

OH OAc

MeO2C OAc CO2Me Cl Cl

O

NO2 Se N

MCPBA heat

DDQ O

MeO

OAc

MeO2C OAc CO2Me

mechanism: Ph-Se-CN :PBu3

RCH2CH2-OH Ph-Se-PBu3

MCPBA RCH2CH2-O-PBu3 heat

RCH=CH2

MeO

TBDMS O H.
O .

DDQ

MeO

23oC, 14h, 88%

THL, 1991, 3679.

TBDMS O
.
O .

7- c C C
XX
CC OH OH
CC Br Br
CC OMs OMs
CC OH I

CC

i. CSCl2 /

NN P Ph

CC

CSCl2

CC OO

base

OH OH

thiophosgene

thionocarbonate

S

CC

or: ?

ii. CSCl2 / P(OMe)3
i. Zn / acetone ii. In / MeOH JCS.CC, 1998, 2113.

CC
NaI / Zn (Cu) via: I I POCl3 / py // Sn

OH H CH3
Et
H3C I

HCO3H

OH P(OMe)3
OH CSCl2

O

OR

S P OR

O

OR

application: i. protect alkene: via Br2 // Zn

ii. purify compound

CCCCC 36 oC CCCC=C 31 oC
CCCC C 148 oC

O

Cl

POCl3

P Cl OH

Sn Et

Py Et

CH3

H3C I

Cl Cl

H
AcO AcO

OAc O
AcO Br

CC

Zn / HOAc

Br OAc

O

OR

S P OR

O

OR

Zn OAc HOAc OAc

OAc O

JOC, 1978, 43, 364.

7- d X
CC
7-d.1 O
CC

CC CC

i. WCl6 / RLi

product retention

ii. LiPPh2 / CH3I product inversion
Cl

iii. Na (special structure):

RO

HO H
HO H

WCl6

H

H

RLi

LiPPh2

OH H

H CH3I

SN2

PPh2

Na

H

R C C CH2 CH2 CH2 OH

H

OH

H

H

PPh2 CH3

S
7-d.2
CC

CC

use: (EtO)3P

S

(EtO)3P

R1

R2

R1

R2 Synthesis, 1977, 1134.

CH3 Ph O P Ph

H

H

oxaphosphetane

H

H

7- e O
C CH3

CC

use: TsNHNH2 // n-BuLi

O

TsNHNH2

HO Pregnenolone
(a female hormone)

HO O

JACS, 1972, 94, 7748.

N NH Ts

n-BuLi HO

N NH Ts

N N Ts

Br Li H2O
Br2
CH3-S-S-CH3

S CH3

TsNHNH2

n-BuLi

O

EtOH TsNHN

JOC, 1977, 42, 1079.

7-f C O

CC

7-f.1 RC O

RC CR'

i. Wittig Reaction 1953 discover (olefination reaction)
ii. Phosphonate Wittig Reaction (Horner-Emmons Modification)

use: Ph3P-CHR' via: betaine, oxaphosphetane (NMR) use: (RO)2PO-CHR' RO = MeO-, EtO-
water soluble, removed by extraction (comparison: O=PPh3 highly soluble in organic solvent)

CO2Me
Et CN

O + Ph3P CH CO2Me
H

O + Ph3P CH Et

H

CN

O
+

PPh3

not

O

PPh3 + H C CO2Me

difficult to prepare not

PPh3 + O

expensive

Et

unstable ylid gives cis (Z)

stable ylid gives trans (E)

iii. Silyl Wittig Reaction (Peterson Reaction) THL, 1981, 2751.
JOC, 1968, 33, 780.

Me3SiCHR-Li+ Ph3SiCH2-Li+ Me3SiC-H-MgBr Ph3SiC-HCH2Ph Me3SiC-HCO2Et
Me3SiCH=PPh3

iv. CH2(ZnI)2 Synlett, 1988, 12, 1369.

Synthesis, 1984, 384.

=== Ph3SiCH2Br + n-BuLi (exchange)

Me3SiC-H-MgBr

=== Me3SiCH2Cl + Mg (metal reduction)

=== Ph3SiCH=CH2 + PhLi (addition to vinylsilane)

O

=== Me3SiCH2CO2Et + Li (metalation)

HO
THL, 1973, 3947. SiMe3

=== Me3SiCH2PPh3+ X- + KH

R C

O

N2H4

R

R C NHNH2
R

R2CO

R CN N
R

CH2(ZnI)2

R N N R PPh3 R N N R

O

CH2

C

C

C

C

R

S

R

R PPh3 S R

R C

H2S

R

R

R

C PPh3

+

not good for Ph3P=CH2 function as base:

O

R NN R

C

C

R

S

R

Ph(OAc)4

R SC
R

R C
R

R C
R

v. CH2CHBr2, Sm, SnI2 / CrCl3, THF

R

O

R

Chem. Lett, 1995, 259.

O

vi. Sulfoximide (Johnson C.)

use: Ph S CH2 Li // Al (Hg) N Me

vii. Grignard reagent: use: TMSCH2MgCl

1. TMSCH2MgCl

THL, 1988, 4339. THL, 1973, 3497. O H

2. NaOAc, AcOH

H

O
Ph S CH2 O N Me

O Ph S
OH NMe
Al (Hg)

N. R. if use: Ph3P-CHR' due to steric hindrance

HO

via:

C

SiMe3

R R'

methylenation advantages over the Wittig: 1. by-products are more easily removed, 2. reaction suffers less from steric effects.

7-f.2 RC O

RC CR

i. use: N2H4 / H2S / Pb(OAc)4

O not for Wittig, ylid unstable

R C

O

N2H4

R

R C NHNH2
R

R2CO

R

R

CN NC

R

R

H2S

HH R NN

Ph(OAc)4 R

C

C

R

S

R

R NN R

C

C

R

S

R

PPh3

R NN R

C

C

R PPh3 S R

R

R

R

C PPh3

+

S

C R

R C
R

R C
R

O O N2H4 O O

O

N

N

O 1. H2S 2. Pb(OAc)4

3. H3O+

SN N

OO

O

ii. McMurry Coupling

TiCl3-LiAlH4 / THF JACS, 1974, 96, 4706.

TiCl3 / Mg

BASF, 1973, 2147.

TiCl4 / Zn

Chem. Lett, 1973, 1041.

TiCl4 / K

JOC, 1978, 43, 3253.

O
commercial available butene side product (trimer)

O

O

O

1. 2.

PHb2(SOAc)4

P(OEt)3

NN

N S
N

N S
N

N S
N

N

NN

S N

O

O O

TiCl3 Zn-Cu
Ti (II) OO via: R C C R
RCC R

7- g C C

CC

not use H2 / Pt: might convert to alkane

form trans alkene:

i. Li / NH3; or other IA metals ii. Li / EtNH2 iii. LiAlH4 / THF

R CCR

R C CH

H

R

form cis alkene:

i. H2 / Ni2B (P-2 catalyst) ii. H2 / Pd-CaCO3 (Lindlar catalyst) iii. H2 / Pd-BaSO4 iv. B2H6 / HOAc (Diborane) v. N2H2 vi. HCHO / Pd-C / Et3N

Et C C Me Ph C C

Et

Me

H

C

C H

CHO

HCHO
Pd-C Et3N

HH Ph C C

CHO JOC, 1980, 45, 4926.

7- h C CH

C CR

all form trans alkene:

i. R2BH / Br-CN (hydroboration)

C CH

ii. DIBAL / n-BuLi / CH3I (hydroalumination)

iii. Cp2ZrClH / RX (hydrozirconation)

H

R

H

C CH R2BH (Syn)
Br H
CC BR
H R CN

C CH

HB

Br-CN

RR R

Br B CN

CCH HR

Br C CH HB
RR
Syn elimination

CNH

DIBAL R

H

RCCH

CC

H

AlR2

n-BuLi

R

H

CC

H

Li

CH3I

R

H

CC

H

CH3

Cp2ZrClH RCC H

R C
H

H R'X C
ZrCP2
Cl

R C CH

H

R'

Br H CC H B CN
RR
R H

7-i C C

CC

application: protecting group
not for C C double bond might move
H OH

via dihalide

C=C

CC

XX

via halohydrin

C=C

CC

HX

via epoxide

C=C

O CC

CC via diene-olefin addition C=C

C=C C=C C=C
C=C

via diradical

Ph

Ph

EtO2C CO2Et

CH2

200 oC

CO2Et CO2Et RONa

Ph

CO2Et CO2Et

LAH

CO2Et CO2Et

1. OH2. H3O+

JACS, 1998, 100, 877.

OH

OH

PhSO2Cl

NaBr

COOH -

180C

Br Br
CO2H
CH2

7-j C-OH

CC

OH MnO2

NO2 MnO2 / Ph3P CH3 Br- / MTBD

Ph3P CH3 Br- NO2 MTBD

Synlett, 2002, 215.

in situ alcohol oxidition Wittig rxn

N
NN CH3
MTBD

C-X
8- a C-OH b C-NH2

c C=O d C(O)Z e C-H

8-a C-OH

C-X

8-a.1 C-OH

C-F

8-a.2 C-OH

C-Cl

8-a.3 C-OH
1. HBr

C-Br

OO

S

Chem. Rev., 1996, 96, 1737.

NF

1.

S

O O JOC, 1993, 58, 3800. O 2. F3S-NEt2 (DAST) $ 500 / 125 g CH3 S

3. CF3CHFCF2NEt2 (Ishikawa reagent)

O

Cl

Me

1. SOCl2

NN

2. HCONMe2 / Cl N Cl

Et

3. COCl2 / DMF JOC, 1983, 48, 2625.

4. CCl4 / PPh3 5. HCl / ZnCl2

6. HCl fit for 3rd alc, directly

CHCl2

O N 1. CF3CHFCF2NEt2

O

CH3 S

OH 2. HOAc / iPrOH

O

OH
F NHCOCHCl2

OH HCONMe2

H

Cl

NN

Cl N Cl

Me H Et Cl

via: Me

Org.Lett, 2002, 4, 553. Et

NMe2 O Cl H

OH CCl4 PPh3

OH fit for 1st alc

HCl ZnCl2

Cl Can.J.Chem, 1968, 46, 86.
Cl JACS, 1938, 60, 2497.

2 PBr3 Can. J. Research, 1932, 7, 464. 3. TMS-Br (HMDS / PyH Br3)

8-a.4 C-OH

C-I

TMSBr OH OH

Br OH

JOC, 1980, 45, 1638.

good for 3rd alc prepare in situ

Si Si

N + Br3 H

(HMDS) (PyH Br3)

Si Br TMS-Br

1. HI 2. PI3

CH3OH

PI3

CH3I JCS, 1905, 87, 1592.

2. PPh3 / I2 JACS, 2003, 125, 1458. 3. TsCl / C6H6 // NaI Intermediate. Org. Chem, 1988.

BnO

OTBS
OH Me

PPh3 / I2 96 %

BnO

OTBS
I Me

PBr3 PBr3 PI3

$ 35 / 1000 g $ 65 / 500 g $ 80 / 50 g

8-b C-NH2

C-X

C-NH2

C-F

NaNO2 / HCl / HBF4 /

Cl

NH2 Cl

NaNO2 Cl

N2BF4 Cl

HCl, HBF4

for aromatic amine

8-c C=O

C-X

C=O

C-F

CF2Br2 / Zn

O

CF2Br2 / Zn F F

58 %

JCS.PT I, 1993, 335.

F

Cl

Cl

8-d C(O)Z C-X

8-d.1 C(O)Z

C-Cl

8-d.2 C(O)Z

C-Br

O Cl

Cl

RhCl(PPh3)3

O R C OH

1. AgNO3/KOH R Br
2. Br2

Chem Rev., 1956, 56, 219.

Ber. 1942, 75, 296.

8-e C-H

C-X

8-e.1

C-H

C-F

i.

NF

SO

O

ii. F- TEDA- BF4

Chem. Rev., 1996, 96, 1737. JCS.CC, 1994, 149.

PhCH2C(O)CH3

F+

F2-N2

PhCHC(O)CH3 F
F

OH

OH

F-TEDA-BF4

Ar

CH3

R

Me-CN,

Ar R

TEDA=triethylenediamine

F 55-90 %

iii. F2-N2 / CFCl3-CHCl3

JOC, 1988, 53, 2803.

CFCl 3-CHCl3 ada manta ne

iv. HF / electrolysis already industrilized
v. NF3O / TBAH / CH3CN

R HF

F

electrolysis

1.4-1.6 V anode: Pt or Ni

R R = CH3CO, COCF3, CCl3, NO2

OO

R

R'

R '' H

NF3O
TBAH / CH3CN rt, 12h

O
R R ''

90 % 1. regioselective fluorination at the more substituted positions 2. electrophilic in nature

O
R' F

THL, 2003, 44, 2799. TBHA: Tetrabutylammoniumhydroxide

8-e.2

C-H

C-X X = Cl, Br, I

NBX / Mg(ClO 4)2

O
R1 H

O

O

NBX

R3 R2

Mg(ClO4)2 R1 X

JOC, 2002, 67, 7429.

O
R3 R2

O

NBX:

NX

O X = Cl, Br, I

8-e.3

C-H

C-I

I2 / HNO3

JACS, 1917, 39, 437.

C-CH3

I2 / HNO3

I 86 %

9- a C-X

9-a C-X

C-CH3

(CH3)3Al

Me3Al

Br

CH2Cl2

98 %

bridgehead methylation Organomet. Chem. Rev., 1996, 4, 47.

4-e C=O

C-N

reductive amination!

1. RNH2 // NaBH3CN most general
2. Me3SiN3 // LiAlH4 via: acetal / ketal type exchange

3. NH3 (excess) // RaNi / H2 catalytic reductive amination
4. PhNHNH2 // Al (Hg) via: hydrazone

5. NH4+HCO2-

Leuckart reaction

6. RNH2 / n-Bu2SnClH / HMPA Synthesis, 2000, 789.

O CH3NH2
acid

O Me3SiN3

O SiMe3

N CH3 NaBH3CN
PH 6

NNN

O SiMe3
NN N

NH CH3
H NN N
LiAlH4 N N N H

H

N

NH2

LiAlH4

O

NH3

RaNi / H2

NH2

O

PhNHNH2

N NHPh

H

HH

N NHPh Al (Hg)

N

H (radical)

H

O

O

NH3

NH2 H

O- NH2

PhN H2

Ph CHO

Ph

n-Bu2SnClH

immonium salt CO2

HMPA

NHPh

Ph

Ph N

By Cl

H Sn

via:

By O P(NMe2)3

4-f C=C

C-C-N

C=C C=C

C-C-NH2

B2H6 / NH2Cl B2H6 / H2NO B2H6 / H2NOSO3H

C-C-NHCOCH3
CH3CN / H3O+

B2H6

NH2Cl
B 3

H+

+ CH3CN

H

B N Cl RR H
N C CH3 H2O

R NBR H
OH N C CH3

NH2
O NH C CH3

CH3CN: bp 81-2, mp -48; polar solvent, for UV, HPLC, NMR (CMR very high field 0.86 ppm, ring current)

4-g R C N

R C NH2
R C NH2 R'

4-g.a form R C NH2

4-g.b form R C NH2 R'

AlH3 / THF

C N AlH3

Br

THF

R'Li // NaBH4

TH, 1989, 30, 5137.

R'MgX // NaBH4

JOC, 1993, 58, 4313.

R'MgX // Li/NH3(l) JOC, 1987, 52, 3901.

R'2CuLi // NaBH4

TH, 1989, 30, 5139.

Br NH2

JOC, 2000, 65, 8152.

R C N R'M // H

R C NH2 R'

O 4-h R C NHR
1. LiAlH4

R CH2 NHR

H CO2H

LiAlH4

N

THF

O

OH H
JOC, 1985, 50, 1711. N

2. NaBH3(OCOR) 3. B2H6

O CH3 C NH

CO2CH3

B2H6

CH3 CH2 NH

CO2CH3

4. Et3O+ BF4- // NaBH4 5. P4S10 // RaNi 6. Lawesson's reagent // RaNi

NH

NH

1. Et3O+BF4-

O 2. NaBH4

1. Et3O+BF4-

O 2. NaBH4

NH

H N

NH

Et3O+BF4-

O

- Et2O

not for B2H6, affect C=C

N OEt H

H N

OEt

H

- EtOH

NH

H N

Et3O+: Et source, convert to good leaving group; not use EtBr
different from: HC(OEt)3 dehydrating agent; H2C(OEt)2 (ketal agent)

NH [Sulfide]
O

NH S RaNi

NH

O 4-i RCH2 C Z

4-i.1

O RCH2 C Z
O RCH2 C NH2

R CH2 NH2 R CH2 NHR'
R CH2 NH2
Hofmann (see below)

O

SOCl2

R CH2 C OH

O R CH2 C Cl NH3

Schmidt HN3 NaN3 Curtius

Hofmann

R

O CH2 C NH2

Br2

O R CH2C NH-Br

OH-

O R CH2 C N N N

O R CH2 C N N N

H2O R CH2 N C O

O R CH2 C N-Br
R CH2 NH2

O RCH2 C OH
O

1. Hofmann: SOCl2, NH3, Br2 / OH- / heat not good, lots of side-products, Br2 strong oxidant
toxic, Schmidt died of it 2. Schmidt: HN3 // H2O

O

Beckmann

OH N

R CH2 C CH3

R CH2 C CH3

OTs N
R CH2 C CH3 anti-migration

O

H2O

R CH2 N C CH3

R CH2 N C CH3

H2O from outside H

RCH2 C Cl Curtius: NaN3 // H2O most useful
O RCH2 C CH3
Beckmann: NH2OH // TsCl / H2O
JACS, 1981, 103, 7368.

Application: CO2Et
O CO2Et
1.NH2OH 2.TsCl O

CO2Et OH-
CO2Et

CO2H CO2H

N Ts

n-Pr3Al 80。C
Pr- source

N+

CO2H CO2H

CO2H

O

Bu2AlH

N

N

H- source

H

CO2H
H2 / Pd-C - CO2 O

O

4-i.2

RCH2 C Z R CH2 NHR'

O

NH2

RCH2 C NH2

O

PhI(OAc)2 // KOH / CH3OH

O

PhI(OAc)2

R C NH2

R

O CN

PhI(OAc)2 KOH / CH3OH

Ph I

KOH

OAc

O NH OCH3
JOC, 1993, 58, 2478.

O

Ph

RCN I

OAc

CH3OH RNCO
PhI, OAc

O R NH C OCH3

C=O

5- a C=O

d C C g C(OR)2

b C=S c C=N-OH

eC N f C=C-OR

C(SR)2 h C-OH

C=N-H C=C-SR

5-a C=O

C=O

i C-NH2 C-NO2
j C-Br k C-H

O camphor

NaNH2
CO2 H3O+

HNO2
C NHNH2 O

O NaBH4 C OH O

Ac2O
OH COOH

OAc COOH

H3O+

NC O

NH2

CNNN

O not use NaN3 directly, avoid attack ?-C

SO2Cl COOH N2H4
H3O+ NH epicamphor O

i. via: ?-CO2H O
R C CR

NaNH2 NaBH4 CO2 / H3O

Ac2O

SOCl2 HNO2 N2H4

H3O+

ii. via: ?-haloketone O

Br2

OH- HBr CrO3

Zn

NaBH4

iii. via: aldol process

PhCHO

NaBH4

H3O+ O3

O

KOH

CeCl3

Zn

O

O R CH2 C R
O

O OO

O OH

O

O

OH

HO

hecogenin acetate O

corticosteroid

Br

OH OH-

O HBr

OH

O

CrO3

Br

Br

limit for: 6 ring, with 1 ?-position blocked

O
O Zn

Br2 NaBH4

1. in the presence of CeCl3, H- attack C=O; otherwise may attack ?-C . and give mixture; mechanism: form Ce-H, follow by H- transfer

iv. via: thioenol ether O LDA
R C CH2R Ph S S Ph

LAH MsCl

KOtBu

HgCl2 aqCH3CN

O R CH2 C R

v. via: epoxysilane O TsNHNH2 MeLi
R C CH2R

TMSCl MCPBA LAH

CrO3

O R CH2 C R

O

O

KOH HO

O PhCHO Ph

HO

other choice: use Al(OiPr)2 / iPrOH (MPV) 2. need Zn, convert to C=O; other choice Me2S

CO O
OC

H

O C

Ce

Cl

O

OH-

Ph

O

NaBH4 Ph CeCl3

H+ Ph
OH

O3 Zn O

H2SO4 drawback: require simple structure, use many powerful agents: MeLi, LAH, MCPBA

O TsNHNH2

H N N Ts
MeLi

MCPBA

SiMe3 O LAH

N N Ts

Li into structure
Li N N Ts H MeLi

SiMe3 OH CrO3

SiMe3 O

N2, Ts-

Li TMSCl
OH

SiMe3 O

O

O

LDA

PhSSPh

SPh thioenol ether

LAH SPh
MsCl

OMs
SPh KOtBu H

H

SPh HgCl2

O

CH3CN (aq)

5-b C=S

C=O

i. hydrolysis ii. MCPBA

CH3O

OH H

MCPBA CH3O

S NMe2

OH H
O NMe2

5-c C=N-Z

C=O

RaNi N OH

NH

5-c.1 C=N-OH i. RaNi
ii. TiCl3

iii. KMnO4 / Al2O3 THL, 2001, 42, 4775.

5-c.2 C=N-H H3O+

C NH H3O+

O
OH NH2

NOH

KMnO4 / Al2O3

C(CH3)3

acetone rt, 5 min

O C(CH3)3

O
JOC, 1970, 35, 858.
H
JOC, 1972, 37, 2138.

5-d C C

C=O
Hg2+ / H2O HgSO4 / H2O / H2O

Hg2+

H2O

Hg

H2O

not certain of which mechanism

OH
HgX OH
H

O
HgX O

5-e C N

C=O

R-CH2-C N

O

1. DIBAL / H3O+

5-e.1

R-CH2-C H 2. HCl./ SnCl2 / Et2O

5-e.2

3. O

H3O+

OH OH

R-CH-C H

O R'

Ph

C N Al (iBu)2H Ph

C N Al

H3O+ Ph

O CH

Stenphen reduction mostly for Ar C N

O Ar C H

J.Org.Syn, 1925, 3, 1874.

5-e.3

R-CH-C R" R'

OH OH
R CH2 C N

O

H R' X O N n-BuLi

H N

CH3I

O

N

R''MgBr O

H3O+

R

N

R'

O R''

R' X / n-BuLi OH OH CH3I

H JOC, 1973, 38, 2129. R

H3O+

R R'

R R'

R'' R R'

R''MgBr H3O+

R

O

H

ON

H3O+ R

O

H

R R'

R'

H

4-e C=O

C-N

reductive amination!

1. RNH2 // NaBH3CN most general
2. Me3SiN3 // LiAlH4 via: acetal / ketal type exchange

3. NH3 (excess) // RaNi / H2 catalytic reductive amination
4. PhNHNH2 // Al (Hg) via: hydrazone

5. NH4+HCO2-

Leuckart reaction

6. RNH2 / n-Bu2SnClH / HMPA Synthesis, 2000, 789.

O CH3NH2
acid

O Me3SiN3

O SiMe3

N CH3 NaBH3CN
PH 6

NNN

O SiMe3
NN N

NH CH3
H NN N
LiAlH4 N N N H

H

N

NH2

LiAlH4

O

NH3

RaNi / H2

NH2

O

PhNHNH2

N NHPh

H

HH

N NHPh Al (Hg)

N

H (radical)

H

O

O

NH3

NH2 H

O- NH2

PhN H2

Ph CHO

Ph

n-Bu2SnClH

immonium salt CO2

HMPA

NHPh

Ph

Ph N

By Cl

H Sn

via:

By O P(NMe2)3

4-f C=C

C-C-N

C=C C=C

C-C-NH2

B2H6 / NH2Cl B2H6 / H2NO B2H6 / H2NOSO3H

C-C-NHCOCH3
CH3CN / H3O+

B2H6

NH2Cl
B 3

H+

+ CH3CN

H

B N Cl RR H
N C CH3 H2O

R NBR H
OH N C CH3

NH2
O NH C CH3

CH3CN: bp 81-2, mp -48; polar solvent, for UV, HPLC, NMR (CMR very high field 0.86 ppm, ring current)

4-g R C N

R C NH2
R C NH2 R'

4-g.a form R C NH2

4-g.b form R C NH2 R'

AlH3 / THF

C N AlH3

Br

THF

R'Li // NaBH4

TH, 1989, 30, 5137.

R'MgX // NaBH4

JOC, 1993, 58, 4313.

R'MgX // Li/NH3(l) JOC, 1987, 52, 3901.

R'2CuLi // NaBH4

TH, 1989, 30, 5139.

Br NH2

JOC, 2000, 65, 8152.

R C N R'M // H

R C NH2 R'

O 4-h R C NHR
1. LiAlH4

R CH2 NHR

H CO2H

LiAlH4

N

THF

O

OH H
JOC, 1985, 50, 1711. N

2. NaBH3(OCOR) 3. B2H6

O CH3 C NH

CO2CH3

B2H6

CH3 CH2 NH

CO2CH3

4. Et3O+ BF4- // NaBH4 5. P4S10 // RaNi 6. Lawesson's reagent // RaNi

NH

NH

1. Et3O+BF4-

O 2. NaBH4

1. Et3O+BF4-

O 2. NaBH4

NH

H N

NH

Et3O+BF4-

O

- Et2O

not for B2H6, affect C=C

N OEt H

H N

OEt

H

- EtOH

NH

H N

Et3O+: Et source, convert to good leaving group; not use EtBr
different from: HC(OEt)3 dehydrating agent; H2C(OEt)2 (ketal agent)

NH [Sulfide]
O

NH S RaNi

NH

O 4-i RCH2 C Z

4-i.1

O RCH2 C Z
O RCH2 C NH2

R CH2 NH2 R CH2 NHR'
R CH2 NH2
Hofmann (see below)

O

SOCl2

R CH2 C OH

O R CH2 C Cl NH3

Schmidt HN3 NaN3 Curtius

Hofmann

R

O CH2 C NH2

Br2

O R CH2C NH-Br

OH-

O R CH2 C N N N

O R CH2 C N N N

H2O R CH2 N C O

O R CH2 C N-Br
R CH2 NH2

O RCH2 C OH
O

1. Hofmann: SOCl2, NH3, Br2 / OH- / heat not good, lots of side-products, Br2 strong oxidant
toxic, Schmidt died of it 2. Schmidt: HN3 // H2O

O

Beckmann

OH N

R CH2 C CH3

R CH2 C CH3

OTs N
R CH2 C CH3 anti-migration

O

H2O

R CH2 N C CH3

R CH2 N C CH3

H2O from outside H

RCH2 C Cl Curtius: NaN3 // H2O most useful
O RCH2 C CH3
Beckmann: NH2OH // TsCl / H2O
JACS, 1981, 103, 7368.

Application: CO2Et
O CO2Et
1.NH2OH 2.TsCl O

CO2Et OH-
CO2Et

CO2H CO2H

N Ts

n-Pr3Al 80。C
Pr- source

N+

CO2H CO2H

CO2H

O

Bu2AlH

N

N

H- source

H

CO2H
H2 / Pd-C - CO2 O

O

4-i.2

RCH2 C Z R CH2 NHR'

O

NH2

RCH2 C NH2

O

PhI(OAc)2 // KOH / CH3OH

O

PhI(OAc)2

R C NH2

R

O CN

PhI(OAc)2 KOH / CH3OH

Ph I

KOH

OAc

O NH OCH3
JOC, 1993, 58, 2478.

O

Ph

RCN I

OAc

CH3OH RNCO
PhI, OAc

O R NH C OCH3

C=O

5- a C=O

d C C g C(OR)2

b C=S c C=N-OH

eC N f C=C-OR

C(SR)2 h C-OH

C=N-H C=C-SR

5-a C=O

C=O

i C-NH2 C-NO2
j C-Br k C-H

O camphor

NaNH2
CO2 H3O+

HNO2
C NHNH2 O

O NaBH4 C OH O

Ac2O
OH COOH

OAc COOH

H3O+

NC O

NH2

CNNN

O not use NaN3 directly, avoid attack ?-C

SO2Cl COOH N2H4
H3O+ NH epicamphor O

i. via: ?-CO2H O
R C CR

NaNH2 NaBH4 CO2 / H3O

Ac2O

SOCl2 HNO2 N2H4

H3O+

ii. via: ?-haloketone O

Br2

OH- HBr CrO3

Zn

NaBH4

iii. via: aldol process

PhCHO

NaBH4

H3O+ O3

O

KOH

CeCl3

Zn

O

O R CH2 C R
O

O OO

O OH

O

O

OH

HO

hecogenin acetate O

corticosteroid

Br

OH OH-

O HBr

OH

O

CrO3

Br

Br

limit for: 6 ring, with 1 ?-position blocked

O
O Zn

Br2 NaBH4

1. in the presence of CeCl3, H- attack C=O; otherwise may attack ?-C . and give mixture; mechanism: form Ce-H, follow by H- transfer

iv. via: thioenol ether O LDA
R C CH2R Ph S S Ph

LAH MsCl

KOtBu

HgCl2 aqCH3CN

O R CH2 C R

v. via: epoxysilane O TsNHNH2 MeLi
R C CH2R

TMSCl MCPBA LAH

CrO3

O R CH2 C R

O

O

KOH HO

O PhCHO Ph

HO

other choice: use Al(OiPr)2 / iPrOH (MPV) 2. need Zn, convert to C=O; other choice Me2S

CO O
OC

H

O C

Ce

Cl

O

OH-

Ph

O

NaBH4 Ph CeCl3

H+ Ph
OH

O3 Zn O

H2SO4 drawback: require simple structure, use many powerful agents: MeLi, LAH, MCPBA

O TsNHNH2

H N N Ts
MeLi

MCPBA

SiMe3 O LAH

N N Ts

Li into structure
Li N N Ts H MeLi

SiMe3 OH CrO3

SiMe3 O

N2, Ts-

Li TMSCl
OH

SiMe3 O

O

O

LDA

PhSSPh

SPh thioenol ether

LAH SPh
MsCl

OMs
SPh KOtBu H

H

SPh HgCl2

O

CH3CN (aq)

5-b C=S

C=O

i. hydrolysis ii. MCPBA

CH3O

OH H

MCPBA CH3O

S NMe2

OH H
O NMe2

5-c C=N-Z

C=O

RaNi N OH

NH

5-c.1 C=N-OH i. RaNi
ii. TiCl3

iii. KMnO4 / Al2O3 THL, 2001, 42, 4775.

5-c.2 C=N-H H3O+

C NH H3O+

O
OH NH2

NOH

KMnO4 / Al2O3

C(CH3)3

acetone rt, 5 min

O C(CH3)3

O
JOC, 1970, 35, 858.
H
JOC, 1972, 37, 2138.

5-d C C

C=O
Hg2+ / H2O HgSO4 / H2O / H2O

Hg2+

H2O

Hg

H2O

not certain of which mechanism

OH
HgX OH
H

O
HgX O

5-e C N

C=O

R-CH2-C N

O

1. DIBAL / H3O+

5-e.1

R-CH2-C H 2. HCl./ SnCl2 / Et2O

5-e.2

3. O

H3O+

OH OH

R-CH-C H

O R'

Ph

C N Al (iBu)2H Ph

C N Al

H3O+ Ph

O CH

Stenphen reduction mostly for Ar C N

O Ar C H

J.Org.Syn, 1925, 3, 1874.

5-e.3

R-CH-C R" R'

OH OH
R CH2 C N

O

H R' X O N n-BuLi

H N

CH3I

O

N

R''MgBr O

H3O+

R

N

R'

O R''

R' X / n-BuLi OH OH CH3I

H JOC, 1973, 38, 2129. R

H3O+

R R'

R R'

R'' R R'

R''MgBr H3O+

R

O

H

ON

H3O+ R

O

H

R R'

R'

H

5-f C=C-X

C=O

C=C-OR H3O+

C=C-SR Hg2+ / CH3CN (aq)

H3O+
OCH3 Hg2+
CH3CN (aq) SCH3

O O

H+ OCH3

H2O

+OCH3

CH3O

OH - CH3OH

O

tpye: X

OR enol ether SR thioenol ether NR enamine Cl vinyl chloride

reactivity:

OR >>

SR

OR

OR

SR

OR >>

SR >>

SR

use: O

OH

OR

OH O

O

R

H

R

OR

R

H

R

H

5-g C(OR)2

C=O

a very common protecting group, deprotect back to ketone

OR OR

H3O+ / solv (aq)

SR SR

Hg2+ / H3O+

O O

H3O+ / solv (aq)

S

S

Hg2+ / H3O+

OEt H C OEt
OEt

RMgX / H3O+

OR

H3O+ / solv (aq)

OH

OR

acid catalyst

OH

OO

H3O+

CH3CN

SS

Hg2+

H3O+

OEt H C OEt

RMgX

OEt

O
O O
RC H

preparation: acid catalyst
TsOH CSA (camphorsulfonic acid) Amberlite resin

CH3OH acid cat
O HOCH2CH2OH acid cat

CH3O OCH3 OO

Type: H OR R OR
acetal

R OR R OR
ketal

H OR R OH
hemiacetal

R OR R OH
hemiketal

unstable: only in aqueous acid stable in: basic solution: LDA, NaOMe
RED: LiAlH4, NaBH4 organoMetal: RMgX, RLi

via:

OEt HC

RMgX

OEt

OEt R C OEt
H

O RC
H

5-h

C-OH
1st alcohol

C=O

O RCH
AcO OAc I OAc

i. PCC ii. PDC iii. Collins reagent CrO3 - 2 Py iv. N-oxide v. DMSO / DCC vi. DMSO / HCl vii. DMSO / NHCO3 / NaI viii. Dess-Martin Reagent

O CH2Cl2, rt, 30 min O JACS, 1991, 113, 7277.

O

OH PDC O

92 %

OCH3

N+ O

RCH2OH

THL, 1979, 5, 399. CHO H11C5

OCH3 N O+

O RCH +

H

S

OH DMSO S

O

S

DCC

S

Can. J. Chem, 1978, 56, 1268.

Br

O Ph DMSO

O

O NaHCO3 / NaI H

O Ph O Synth. Commun., 1986, 16, 1343.

60 %

PDC CH2OH
70 %

H11C5

CHO

OCH3
N OH

Pfitzner-Moffatt oxidation JOC, 1985, 50, 1332.

DMSO PhCH2OH HCl

SynLett, 2002, 2041.

PhCHO H

CH3

via: PhCH2 DMSO

PhC O S CH3

H

2nd alcohol
1st alcohol aldehyde

O RCR

i. PCC TH, 1975, 2647.

ii. PDC

TH, 1978, 2771.

iii. Jones reagent (Na2Cr2O7-H2SO4 / acetone)

iv. Moffatt oxidation (DMSO / Ac2O)

v. Swern oxidation

vi. DDQ / dioxane

vii. MnO2 / CHCl3 JOC, 1997, 62, 5246.

viii. Oppenauer zoidation Al(OiPr)3, acetone

ix. K2Cr2O7 (s), rt solvent free

THL, 2002, 43, 8843.

O R C OH

i. Jones reagent ii. KMnO4

O R C OH

Ag2O

PCC (pyridinium chlorochromate) (Py-HCl-CrO3) most widely used

.
N CrO3 HCl

PDC (pyridinium dichormate) (H2Cr2O7 + 2 Py) use 1 - 1.2 eq.

N H

+

2

Cr2O7- 2

OH

DMSO

Ac2O Moffatt oxidation

OH

DMSO

RC R

ClCO-CO2H Et3N

Swern oxidation

O + Me2S + HOAc

O RC R

+ Me2S + Cl, CO, CO2 + Et3NHCl

O O C CH3
H3C S CH3 OH

OO C C OH O
H3C S CH3 OH C RR

MeO

OH

HO

DDQ dioxane

MeO HO

O

O

CN

Cl

DDQ:

CN

Cl

JOC, 1980, 45, 1596.

O

Al(OiPr)3

HO

acetone O

Synthesis, 1979, 537.

Collins reagent: (CrO3 - 2 Py) 1. drawback: use 6 equivalent, a messy reaction 2. must be very dry, fire easily; purify by CaH2 3. an old oxidizing material, isolated by Collin.

Swern oxidation: (DMSO, oxalyl chloride, Et3N) drawback: react at low T Synthesis, 1981, 165.

Ag2O:

JOC, 1977, 42, 1991.

1. a mild oxidizing agent

2. must be freshly prepared: NaOH into AgNO3 (aq)

3. may involve surface change, react with CO2, light

5-i C-NX2

C=O

5-i.1 C-NH2

C=O

i. Corey approach: subtituted-quinone // H3O+

ii. Watt approach a. PhCHO // MCPBA // H3O+ b. ArPhO // MCPBA // H3O+ c. NBS // KOH // H3O+

O CH N

O

O

O

Ph

O

O

Ph

O // H3O+ Ph

NH2

Ph

H3O+ Ph

NH2 O Ph

N

Ph Ph

O

Ph

N

Ph OH

H3O+ Ph Ph

O

Ph

PhCHO Ph

NH2

O

MCPBA

Ph NH2 PhCHO

Ph

O

N C Ph

Ph

MCPBA

N C Ph

Ph NH H3O+ - PhCHO

Ph

o

N C Ph

H
Ph O

5-i.2 C-NO2
i. Et3N // H3O+

C=O
Nef reaction Chem. Rev. 1955, 55, 137.

ii. TiCl3 / pH 1 or 6

McMurray reaction

iii. SiO2 / NaOH // H3O+ JACS, 1977, 99, 3861.

NO2

O

O

O

TiCl3

NO2

pH1

O

Et3N H
NO O

H3O+
NO O
O

OO NO2

TiCl3 pH6

O O pH 6: weak acid buffer, avoid interfere with ketal group
O

iv. LDA / MoO5-Py- / HMPT // H3O+ THL, 1981, 5235. v. NaOH // CH3OH / H2SO4 // H3O+ Synthesis, 1988, 379.

NO2 1. NaOH

S Ph

2.CH3OH H2SO4

OMe

H3O+

S

OMe

O S

Ph

Ph

vi. KMnO4 / KOH JOC, 1969, 34, 2438.

KO H NO2

KMnO4 N O-
O-

O NO

O

O

Mn

O

O

O

NO

O

O

Mn

- MnO2 - NO3-

O

O

O

5-j C-Br

C=O

indrect: change to RC-OH followed by oxidation

direct: 1. DMAPO / DBU / CH3CN

Bull Soc. Jpn., 1981, 54, 2221.

2. NaIO4 / DMF a new method

Br

NaIO4 / DMF 150 oC, 40 min

3. DMSO reagents: i. DMSO / AgBF4

THL, 1974, 917.

ii. DMSO / ZnS JACS, 2003, 68, 2480.

O THL, 2003, 44, 1375. 84 %

DMSO
RCHBrMe AgBF4
OH Br DMSO
ZnS

RC(O)Me
OH O

NMe2

NMe2

N DMAPO O

via: N O

N,N-Dimethylam inopyridineoxide

Ph

H

Br R

DMSO / AgBF4 - AgBr

S O

R

H

- Me2S

O R

5-k C-H

C=O

1. SeO2

JCS, 1932, 1875.

O Ph
CH3

SeO2 Se

O Ph
O
H

2. DDQ / TFA. Synthesis, 1979, 537.

O

OH

I

3.

O Ph-F / DMSO

DDQ

TFA

DDQ

H3O+

Ar N CH3 H

Ar N CH2

Ar N HO

Ar N

CF3

O

CF3

Ar

N CHO H

O

O

(3 eq.) O

a select oxidant

CH3

JACS, 2001, 123, 3183.

CHO

CC

6- a RC CH b RCH2-SO2Ph cC C

dC C e RCH(CO2H)-CH3 f -C(O)-CH3

g
OO

hX

O

i CRR'=CHX

6-a

RC CH

RC CR'

i. n-BuLi / RX

n-BuLi: not MeLi, or t-BuLi, fire easily RX: R-Br, R-TOS, RCHO, RC(O)R

ii. (Ph3P)2PdCl2, CuI, Et2NH / PhI

Cl

iii. N

OMe

Li

steric base, prevent Nu attack

RC C H RC C H

R C C R'
R C C CHOH R

n-BuLi H
n-BuLi RCCH

R Br

Li

R

LiBr

O R C C Li R C H

OH RCC C H

R

RCC H

R C C Ph

THL, 1975, 4467.

RCCH

R C C Ar

II Pd
Pd I
Ph-I
Ph

RC C H

Pd C C R Ph

II Pd
R C C Ph

Cl

N

H

OMe

addition steric

?+

C CR

?- R C C Li

OCH3

OMe

iv. CuI, NaI, Na2CO3, R C C CH2Cl

Cl CH2 C C R'

R C CH

R C C CH2 C C R'

Synthesis, 2000, 691.

6-b RCH2-SO2Ph

RC CR'

n-BuLi / R'CHO // Ac2O // KOtBu

R CH2SO2Ph sulfone

n-BuLi RCHO

SO2Ph R C C R'
OH

Ac2O

SO2Ph R C C R'
OAc -HOAc

SO2Ph
R C C R' H

KOtBu

R C C R'

- PhSO2H

sulfonic acid: PhSO3H; sulfinic acid: PhSO2H; sulfenic acid: PhSOH

6-c C C

CC

JACS, 1975, 97, 891.

i. move to terminal use: KAPA NH2 NHK

ii. protect - deprotect use: Co (CO)8 // Fe(NO3)3, EtOH Fe(NO3)3: weak oxidizing agent

6-d C C

CC

use: i. Br2 / CCl4 // KOtBu

ii. Br2 // KOH

Ph

JACS, 1941, 63, 1180.

Ph Ph

6-e R CH CH3
CO2H

RCCH

KAPA

CH

limit: continueous CH2, not branch

R HH

K+N-HR R

H RCC CC
H

CH2 CH2 CH3

propargylic
RCCCC

R C C C CH2 CH2-CH2 CH2CH3
H allene

CH2C CH

R C C C C CH2C C K

irreversible at the final step

HO

Ph

HO

HO C CH
Co2(CO)8

HO

HO

H CC

CO Co Co CO CO CO CO CO

H

HO

CC

CO Co Co CO CO CO CO CO

1.B2H6 2.HOAc

choose B2H6, not H2/cat: Co poison cat
HO C CH

Fe(NO3)3

EtOH HO H

R

CH

CH3

Pb(OAc)4, LiCl R

CH

CO2H

KOtBu

CH2 Br2/CCl4 KOtBu

RCCH

use: Pb(OAc)4, LiCl // KOtBu // Br2/CCl4 // KOtBu in fact: convert to C=C firstly
O

CH3

OAc

R C C O Pb OAc

Cl-

O

OAc

Cl
R C CH3 - CO2, - Pb (OAc)2, -OAc-

LiCl Pb(OAc)4 O
CO2H

1.NaBH4

H

HO

Cl

2.KOtBu

involved: reduction NaBH4, oxidation CrO3.Py, prevent ?-H attacked by Br2

1.Br2/CCl4

2.KOtBu 3.CrO3.2Py

O

O

6-f

R C CH3

RCCH

i. NaBH4, H3O+, Br2, KOtBu

O R C CH3 NaBH4

OH R C CH3

H3O+ R C CH2 Br2 RCHBrCH2Br KOtBu R C CH

ii. NH2OH, NaNO2 / H2SO4 // Ac2O / DMAP
O
iii. LDA, ClPO(OEt)2
O

O R C CH3

NH2OH

R C N OH CH3

JOC, 1979, 44, 4116.

H2SO4

R C N OH2 CH3

NaNO2

O

RCNN O

HC H H

Ac2O DMAP

OAc

RC N N

C

O

HH

R C CH

O R C CH3

LDA

OPO(OEt)2 R C CH

LDA

ClPO(OEt)2

H

JOC, 1980, 45, 2526. vinyl phosphate

N

N

R C CH

DMAP:

N

4-N,N-Dimethylaminopyridine

German invention, as acylating agent

N C O CH3
mixture of Ac2O / DMAP:

LDA: Li N(iPr)2, ignored a long time, re-introduced by Michigan State U. became famous, appeared every week

6-g

OO

O

use: TsNHNH2 / EtOH, heat THL, 1967, 3943.

O

O

TsNHNH2
N O
NH Ts

H2O2
O

O CH3 CH CH2
(MVK)
Robinson Annulation O

N

N

O

Ts

N2

O

Ts-

Na / NH3(l)

OH

6-h

Cl

O

R

HO

use: LiNH2 / NH3 (l) / R-X

Cl

LiNH2 / NH3 (l)

O

RX

R

HO

6-i.

R C CX R'

R C C R'

JACS, 1955, 77, 3293. JACS, 1958, 80, 4599.

i. NaOEt (when X = Br) ii. BuLi (when X = -OSO2CF3)

Ar Ar'
Me Ph

Br

NaOEt

Ar C C Ar'

H

OSO2CF3 H

BuLi

Me C C Ph

Me via:

C

via: Ar

Ph

Ar'

JOC, 1978, 43, 364.

Br ?

CC
7- a CH-CX b CH-CH

c CX-CY
X
d CC
e -C(O)-CH3

f CO g CC h C CH

iC C j C-OH

7- a C C
HX

CC

CC H OH

use:

i. p-TSOH.H2O or CSA ii. weak acid: HOAc; HCO2H; H2C2O4

iii strong acid: H2SO4; HCl

CC

iv. ArSeCN, PBu3 // MCPBA

H OMs use base: i. RONa; ii. KOtBu

HO

CC H OAc

use: heat

CC

use: heat

H OC(S)SMe

CC HI

use base: DBN N N

CC H NH2

i. CH3I / Ag2O // heat (Hoffman elimination) ii. HCHO / HCO2H // H2O2 // heat (Cope elimination)

OH (CO2H)2 / benzene
Ph Dean-Stark

MsCl

MsO

RONa
or KOtBu

i. n-BuLi ii. CS2
OH
iii. CH3I

S

heat

O SMe

C C applied for reactions: without rearrangement;
H OH no regiosiomer
Ph

OH p-TSOH

+

major minor

H

O

heat

O CH3

syn elimination

I DBN

compare:

OH H2SO4

CH3I (excess) NH2
HCHO
HCO2H

NMe3I- Ag2O NMe2 H2O2

H NMe3 OH-
HO NMe2

heat heat

7- b

CC

C

HH

i. DDQ ii. chloronail

C
O NC
NC O

iii. Pd-C; or Ni; Pt, Rh

Cl O
Cl Cl
Cl O
Pd-C

MeO

OH OAc

MeO2C OAc CO2Me Cl Cl

O

NO2 Se N

MCPBA heat

DDQ O

MeO

OAc

MeO2C OAc CO2Me

mechanism: Ph-Se-CN :PBu3

RCH2CH2-OH Ph-Se-PBu3

MCPBA RCH2CH2-O-PBu3 heat

RCH=CH2

MeO

TBDMS O H.
O .

DDQ

MeO

23oC, 14h, 88%

THL, 1991, 3679.

TBDMS O
.
O .

7- c C C
XX
CC OH OH
CC Br Br
CC OMs OMs
CC OH I

CC

i. CSCl2 /

NN P Ph

CC

CSCl2

CC OO

base

OH OH

thiophosgene

thionocarbonate

S

CC

or: ?

ii. CSCl2 / P(OMe)3
i. Zn / acetone ii. In / MeOH JCS.CC, 1998, 2113.

CC
NaI / Zn (Cu) via: I I POCl3 / py // Sn

OH H CH3
Et
H3C I

HCO3H

OH P(OMe)3
OH CSCl2

O

OR

S P OR

O

OR

application: i. protect alkene: via Br2 // Zn

ii. purify compound

CCCCC 36 oC CCCC=C 31 oC
CCCC C 148 oC

O

Cl

POCl3

P Cl OH

Sn Et

Py Et

CH3

H3C I

Cl Cl

H
AcO AcO

OAc O
AcO Br

CC

Zn / HOAc

Br OAc

O

OR

S P OR

O

OR

Zn OAc HOAc OAc

OAc O

JOC, 1978, 43, 364.

7- d X
CC
7-d.1 O
CC

CC CC

i. WCl6 / RLi

product retention

ii. LiPPh2 / CH3I product inversion
Cl

iii. Na (special structure):

RO

HO H
HO H

WCl6

H

H

RLi

LiPPh2

OH H

H CH3I

SN2

PPh2

Na

H

R C C CH2 CH2 CH2 OH

H

OH

H

H

PPh2 CH3

S
7-d.2
CC

CC

use: (EtO)3P

S

(EtO)3P

R1

R2

R1

R2 Synthesis, 1977, 1134.

CH3 Ph O P Ph

H

H

oxaphosphetane

H

H

7- e O
C CH3

CC

use: TsNHNH2 // n-BuLi

O

TsNHNH2

HO Pregnenolone
(a female hormone)

HO O

JACS, 1972, 94, 7748.

N NH Ts

n-BuLi HO

N NH Ts

N N Ts

Br Li H2O
Br2
CH3-S-S-CH3

S CH3

TsNHNH2

n-BuLi

O

EtOH TsNHN

JOC, 1977, 42, 1079.

7-f C O

CC

7-f.1 RC O

RC CR'

i. Wittig Reaction 1953 discover (olefination reaction)
ii. Phosphonate Wittig Reaction (Horner-Emmons Modification)

use: Ph3P-CHR' via: betaine, oxaphosphetane (NMR) use: (RO)2PO-CHR' RO = MeO-, EtO-
water soluble, removed by extraction (comparison: O=PPh3 highly soluble in organic solvent)

CO2Me
Et CN

O + Ph3P CH CO2Me
H

O + Ph3P CH Et

H

CN

O
+

PPh3

not

O

PPh3 + H C CO2Me

difficult to prepare not

PPh3 + O

expensive

Et

unstable ylid gives cis (Z)

stable ylid gives trans (E)

iii. Silyl Wittig Reaction (Peterson Reaction) THL, 1981, 2751.
JOC, 1968, 33, 780.

Me3SiCHR-Li+ Ph3SiCH2-Li+ Me3SiC-H-MgBr Ph3SiC-HCH2Ph Me3SiC-HCO2Et
Me3SiCH=PPh3

iv. CH2(ZnI)2 Synlett, 1988, 12, 1369.

Synthesis, 1984, 384.

=== Ph3SiCH2Br + n-BuLi (exchange)

Me3SiC-H-MgBr

=== Me3SiCH2Cl + Mg (metal reduction)

=== Ph3SiCH=CH2 + PhLi (addition to vinylsilane)

O

=== Me3SiCH2CO2Et + Li (metalation)

HO
THL, 1973, 3947. SiMe3

=== Me3SiCH2PPh3+ X- + KH

R C

O

N2H4

R

R C NHNH2
R

R2CO

R CN N
R

CH2(ZnI)2

R N N R PPh3 R N N R

O

CH2

C

C

C

C

R

S

R

R PPh3 S R

R C

H2S

R

R

R

C PPh3

+

not good for Ph3P=CH2 function as base:

O

R NN R

C

C

R

S

R

Ph(OAc)4

R SC
R

R C
R

R C
R

v. CH2CHBr2, Sm, SnI2 / CrCl3, THF

R

O

R

Chem. Lett, 1995, 259.

O

vi. Sulfoximide (Johnson C.)

use: Ph S CH2 Li // Al (Hg) N Me

vii. Grignard reagent: use: TMSCH2MgCl

1. TMSCH2MgCl

THL, 1988, 4339. THL, 1973, 3497. O H

2. NaOAc, AcOH

H

O
Ph S CH2 O N Me

O Ph S
OH NMe
Al (Hg)

N. R. if use: Ph3P-CHR' due to steric hindrance

HO

via:

C

SiMe3

R R'

methylenation advantages over the Wittig: 1. by-products are more easily removed, 2. reaction suffers less from steric effects.

7-f.2 RC O

RC CR

i. use: N2H4 / H2S / Pb(OAc)4

O not for Wittig, ylid unstable

R C

O

N2H4

R

R C NHNH2
R

R2CO

R

R

CN NC

R

R

H2S

HH R NN

Ph(OAc)4 R

C

C

R

S

R

R NN R

C

C

R

S

R

PPh3

R NN R

C

C

R PPh3 S R

R

R

R

C PPh3

+

S

C R

R C
R

R C
R

O O N2H4 O O

O

N

N

O 1. H2S 2. Pb(OAc)4

3. H3O+

SN N

OO

O

ii. McMurry Coupling

TiCl3-LiAlH4 / THF JACS, 1974, 96, 4706.

TiCl3 / Mg

BASF, 1973, 2147.

TiCl4 / Zn

Chem. Lett, 1973, 1041.

TiCl4 / K

JOC, 1978, 43, 3253.

O
commercial available butene side product (trimer)

O

O

O

1. 2.

PHb2(SOAc)4

P(OEt)3

NN

N S
N

N S
N

N S
N

N

NN

S N

O

O O

TiCl3 Zn-Cu
Ti (II) OO via: R C C R
RCC R

7- g C C

CC

not use H2 / Pt: might convert to alkane

form trans alkene:

i. Li / NH3; or other IA metals ii. Li / EtNH2 iii. LiAlH4 / THF

R CCR

R C CH

H

R

form cis alkene:

i. H2 / Ni2B (P-2 catalyst) ii. H2 / Pd-CaCO3 (Lindlar catalyst) iii. H2 / Pd-BaSO4 iv. B2H6 / HOAc (Diborane) v. N2H2 vi. HCHO / Pd-C / Et3N

Et C C Me Ph C C

Et

Me

H

C

C H

CHO

HCHO
Pd-C Et3N

HH Ph C C

CHO JOC, 1980, 45, 4926.

7- h C CH

C CR

all form trans alkene:

i. R2BH / Br-CN (hydroboration)

C CH

ii. DIBAL / n-BuLi / CH3I (hydroalumination)

iii. Cp2ZrClH / RX (hydrozirconation)

H

R

H

C CH R2BH (Syn)
Br H
CC BR
H R CN

C CH

HB

Br-CN

RR R

Br B CN

CCH HR

Br C CH HB
RR
Syn elimination

CNH

DIBAL R

H

RCCH

CC

H

AlR2

n-BuLi

R

H

CC

H

Li

CH3I

R

H

CC

H

CH3

Cp2ZrClH RCC H

R C
H

H R'X C
ZrCP2
Cl

R C CH

H

R'

Br H CC H B CN
RR
R H

7-i C C

CC

application: protecting group
not for C C double bond might move
H OH

via dihalide

C=C

CC

XX

via halohydrin

C=C

CC

HX

via epoxide

C=C

O CC

CC via diene-olefin addition C=C

C=C C=C C=C
C=C

via diradical

Ph

Ph

EtO2C CO2Et

CH2

200 oC

CO2Et CO2Et RONa

Ph

CO2Et CO2Et

LAH

CO2Et CO2Et

1. OH2. H3O+

JACS, 1998, 100, 877.

OH

OH

PhSO2Cl

NaBr

COOH -

180C

Br Br
CO2H
CH2

7-j C-OH

CC

OH MnO2

NO2 MnO2 / Ph3P CH3 Br- / MTBD

Ph3P CH3 Br- NO2 MTBD

Synlett, 2002, 215.

in situ alcohol oxidition Wittig rxn

N
NN CH3
MTBD

C-X
8- a C-OH b C-NH2

c C=O d C(O)Z e C-H

8-a C-OH

C-X

8-a.1 C-OH

C-F

8-a.2 C-OH

C-Cl

8-a.3 C-OH
1. HBr

C-Br

OO

S

Chem. Rev., 1996, 96, 1737.

NF

1.

S

O O JOC, 1993, 58, 3800. O 2. F3S-NEt2 (DAST) $ 500 / 125 g CH3 S

3. CF3CHFCF2NEt2 (Ishikawa reagent)

O

Cl

Me

1. SOCl2

NN

2. HCONMe2 / Cl N Cl

Et

3. COCl2 / DMF JOC, 1983, 48, 2625.

4. CCl4 / PPh3 5. HCl / ZnCl2

6. HCl fit for 3rd alc, directly

CHCl2

O N 1. CF3CHFCF2NEt2

O

CH3 S

OH 2. HOAc / iPrOH

O

OH
F NHCOCHCl2

OH HCONMe2

H

Cl

NN

Cl N Cl

Me H Et Cl

via: Me

Org.Lett, 2002, 4, 553. Et

NMe2 O Cl H

OH CCl4 PPh3

OH fit for 1st alc

HCl ZnCl2

Cl Can.J.Chem, 1968, 46, 86.
Cl JACS, 1938, 60, 2497.

2 PBr3 Can. J. Research, 1932, 7, 464. 3. TMS-Br (HMDS / PyH Br3)

8-a.4 C-OH

C-I

TMSBr OH OH

Br OH

JOC, 1980, 45, 1638.

good for 3rd alc prepare in situ

Si Si

N + Br3 H

(HMDS) (PyH Br3)

Si Br TMS-Br

1. HI 2. PI3

CH3OH

PI3

CH3I JCS, 1905, 87, 1592.

2. PPh3 / I2 JACS, 2003, 125, 1458. 3. TsCl / C6H6 // NaI Intermediate. Org. Chem, 1988.

BnO

OTBS
OH Me

PPh3 / I2 96 %

BnO

OTBS
I Me

PBr3 PBr3 PI3

$ 35 / 1000 g $ 65 / 500 g $ 80 / 50 g

8-b C-NH2

C-X

C-NH2

C-F

NaNO2 / HCl / HBF4 /

Cl

NH2 Cl

NaNO2 Cl

N2BF4 Cl

HCl, HBF4

for aromatic amine

8-c C=O

C-X

C=O

C-F

CF2Br2 / Zn

O

CF2Br2 / Zn F F

58 %

JCS.PT I, 1993, 335.

F

Cl

Cl

8-d C(O)Z C-X

8-d.1 C(O)Z

C-Cl

8-d.2 C(O)Z

C-Br

O Cl

Cl

RhCl(PPh3)3

O R C OH

1. AgNO3/KOH R Br
2. Br2

Chem Rev., 1956, 56, 219.

Ber. 1942, 75, 296.

8-e C-H

C-X

8-e.1

C-H

C-F

i.

NF

SO

O

ii. F- TEDA-BF4

Chem. Rev., 1996, 96, 1737. JCS.CC, 1994, 149.

PhCH2C(O)CH3

F+

F2-N2

PhCHC(O)CH3 F
F

OH

OH

F-TEDA-BF4

Ar R CH3

Me-CN,

Ar R

TEDA=triethylenediamine

F 55-90 %

iii. F2-N2 / CFCl3-CHCl3

JOC, 1988, 53, 2803.

CFCl 3-CHCl3 ada manta ne

iv. HF / electrolysis already industrilized
v. NF3O / TBAH / CH3CN

R HF

F

electrolysis

1.4-1.6 V anode: Pt or Ni

R R = CH3CO, COCF3, CCl3, NO2

OO

R

R'

R '' H

NF3O
TBAH / CH3CN rt, 12h

O
R R ''

90 % 1. regioselective fluorination at the more substituted positions 2. electrophilic in nature

O
R' F

THL, 2003, 44, 2799. TBHA: Tetrabutylammoniumhydroxide

8-e.2

C-H

C-X X = Cl, Br, I

NBX / Mg(ClO 4)2

O
R1 H

O

O

NBX

R3 R2

Mg(ClO4)2 R1 X

JOC, 2002, 67, 7429.

O
R3 R2

O

NBX:

NX

O X = Cl, Br, I

8-e.3

C-H

C-I

I2 / HNO3

JACS, 1917, 39, 437.

I2 / HNO3

I 86 %

C-CH3 9- a C-X

9-a C-X

C-CH3

(CH3)3Al

Me3Al

Br

CH2Cl2

98 %

bridgehead methylation Organomet. Chem. Rev., 1996, 4, 47.


相关文章:
有机化学官能团相互转化.doc
有机化学官能团相互转化 - 5-f C=C-X C=C-OR C=C-SR C=
有机化合物之间的转化及官能团的演变_图文.ppt
有机化合物之间的转化及官能团的演变 - 一、主要有机之间转化关系 (官能团的衍
有机化学官能团转化图解基础知识.doc
有机化学官能团转化图解基础知识 - 材料科学与化学工程学院 2.1.2 烯烃的官
有机化学复习之有机化合物相互转化关系.doc
有机化学复习之有机化合物相互转化关系_理化生_高中教育_教育专区。高二有机...根据反应条件推断官能团或反应类型: (1)浓硫酸:酸醇的酯化反应、醇的消去反应...
有机化合物之间的转化及官能团的演变-精选文档_图文.ppt
有机化合物之间的转化及官能团的演变-精选文档 - 一、主要有机之间转化关系 (官能团的衍变) 烷 烯 炔 C2H2 卤代烃 水解 醇 氧化 还原 醛 氧化 羧酸 酯化 ...
高三有机化学中有机物间相互转化关系图全解.doc
高三有机化学中有机物间相互转化关系图全解 - 一、有机物间相互转化关系 二、能与
有机反应类型与官能团之间的转化.doc
有机反应类型与官能团之间转化 - 有机反应类型与官能团之间转化 一、有机化学反应类型归纳: 有机化学反应类型归纳: 1.取代反应:有机物分子里的某些原子或...
官能团相互转换_图文.pdf
官能团相互转换_理学_高等教育_教育专区。有机化学药物化学合成资料。 Funct
重要有机物间相互转化_图文.ppt
重要有机物间相互转化 - 新课标苏教版选修五 有机化学基础 专题四 第三单元 烃的衍生物 醛 羧酸 三、重要有机物之间的相互转化 我们已经学习了重要有机物的...
重要有机物之间的相互转化_图文.ppt
重要有机物之间的相互转化 - 有机合成重要有机物之间的相互转化 重要有机物之间的相互转化 有机化合物之间的转化关系 CH2=CH2 加成(H2,X2,HX, ...
官能团之间的转化与有机反应类型.doc
官能团之间转化有机反应类型 - 有机反应类型与官能团之间转化 一、有机反应类型大归纳 1.取代反应:有机物分子里的某些原子或原子团被其他原子或原子团所...
【化学】高三化学突破《官能团之间的转化与有机反应类....pdf
化学】高三化学突破《官能团之间转化有机反应类型》 - 第9讲 官能团之间转化有机反应类型 【知能整合】 一、有机反应类型大归纳 1.取代反应:有机物...
重要有机物之间的相互转化全解_图文.ppt
重要有机物之间的相互转化全解 - 重要有机物之间的 相互转化 明辨是非 丁香油酚
有机化合物之间的转化及官能团的演变_图文.ppt
有机化合物之间转化官能团的演变_化学_自然科学_专业资料。第四节 有机合成 ? 有机合成是合成化学的一个分支,主要 是经由各式各样的有机反应来建构有机 ...
重要有机物之间的相互转化易错题含答案.doc
重要有机物之间的相互转化易错题含答案 - 训练 6 [基础过关] 重要有机物之间的相互转化 一、有机化合物官能团相互转化 1.下列反应中,不可能在有机物中引入...
重要有机物之间的相互转化_图文.ppt
重要有机物之间的相互转化 - 重要有机物之间的 相互转化 明辨是非 丁香油酚结构
重要有机物之间的相互转化_图文.ppt
重要有机物之间的相互转化 - 有机合成(一) 重要有机物之间的相互转化 重要有机物之间的相互转化 有机化合物之间的转化关系 CH2=CH2 加成(H2,X2,...
有机化学官能团高效记忆(表格).doc
有机化学官能团高效记忆(表格) - 高中常见有机化合物结构与性质总结 物质类别
话有机化学之灵魂“官能团”.doc
有机化学之灵魂“官能团” - 龙源期刊网 http://www.qikan.com.cn 话有机化学之灵魂“官能团” 作者:李福花 来源:《中学化学》2015 年第 12 期 1.CC、...
高中有机化学中各种官能团的性质.doc
高中有机化学中各种官能团的性质 - 高中有机化学中各种官能团的性质 1。 卤化烃: 官能团, 卤原子 在碱的溶液中发生“水解反应”, 生成醇 在碱的醇溶液中发生...
更多相关标签: