高一 课题 2.2.1 一次函数的性质与图像 1. 一次函数的性质与图像 2.直线的斜率和 y 轴上的截距 学习目标 学习重点 自 主 学 习 : 双 基 预 习 掌握一次函数的概念和性质 【知识再现】 1.正比例函数 2.函数的单调性、奇偶性 3.分段函数 【概念探究】 阅读课本 55 页到 56 页,完成下列问题 1 函数 叫做一次函数 . 它的定义域为 是 , 其中 k 叫做该直线的
年级
设计者
高一数学组
,值域为 .一次函数又叫
. 它的图象 .
b 叫做该直线在 y 轴上的 ,
2 讨论斜率 k 的符号与函数单调性的关系 3 讨论 b 的取值对函数的奇偶性的影响 4 直线 y ? kx ? b 与 x 轴的交点为 5 完成课后练习 A 第 1,2,3 题 1、函数 y ? 2 x 组 内 合 作
3n ? 2
,与 y 轴的交点为
.
,当 n=____时, y 是 x 的正比例函数。
2、已知函数 y ? (2m ? 1) x ? 1 ? 3m , m 为何值时, (1)这个函数为正比例函数; (2)这个函数为一次函数; (3)函数值 y 随 x 的增大而减小; (4)这个函数图像与直线 y ? x ? 1 的交点在 x 轴上.
3、某电信局收取网费如下:163 网费为每小时 3 元,169 网费为每小时 2 元,但要收取 15 元月 租费。设网费为 y 元,上网时间为 x 小时, (1) 分别写出 y 与 x 的函数关系式。 (2) 某网民每月上网 19 小时,他应选择哪种上网方式。
3、完成课后练习 A 第 4,5 题,练习 B
1、 已知直线 y ? kx ? 12(k ? 0) 和两坐标轴所围成的三角形的面积为 24,求 k 的值
合 作 探 究 课 堂 展 示
2、已知一次函数 y ? (6 ? 3m) x ? (n ? 4) ,求 (1) m 为何值时, y 随 x 的增大而减小; (2) m、n 为何值时,函数图象与 y 轴的交点在 x 轴的下方; (3) m、n 分别为何值时,函数图象经过原点
【课堂检测】 1、 已知 y ? (m ? 1) x m A、1 B、2
2
?3m?3
是一次函数,且 y 随 x 的增大而增大,则 m 的值为( ) D、1 或 2
C、大于 1
2、已知一次函数 y ? (m ? 2) x ? m 2 ? 3m ? 2 ,它的图象在 y 轴上的截距为 ? 4 ,则 m 的值为 ( ) A、-4 B、2 C、1 D、2 或 1
3、经过点(1,2)并且在两坐标轴上的截距的绝对值相等的直线有( A、1 条 B、2 条 C、3 条 D、4 条
)
4、若直线 y ? (m ? 3) x ? 5 与 y ? x ? m ? m ? 1 重合,则 m ?
2 2
.
5、已知一次函数 y ? m x ? 1 与 y ? nx ? 2 的图象相交于 x 轴上一点,那么 m : n =
.
6、已知直线 y ? ?
b 1 2 x ? 4 和直线 y ? x ? 交于点(1,3) ,求 a , b 的值,并求出两直线与 x 4 a a
轴围成的三角形的面积.