当前位置:首页 >> 数学 >>

任意角教学设计


1.1.1 任意角
教学目标 (一) 知识与技能目标 理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合; 掌握区间角的集合的书写. (三) 情感与态度目标 1.提高学生的推理能力; 教学重点 任意角概念的理解;区间角的集合的书写. 教学难点 终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入: 回顾角的定义 ① 角的第一种定义是有公共端点的两条射线组成的图形叫做角. ② 角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另 一个位置所形成的图形. 二、新课: 1.角的有关概念:现实生活中的角是不是都是我们初中所学的范围呢?(拨手 表,体操中的转体,齿轮旋转) ① 角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋 转到另一个位置所形成的图形. ② 角的名称: ③ 角的分类: (动画演示:拖动点 D 可以看到逆时针旋转时是正角,顺时针时是 负角)
B 终边 O 顶点 始边

2.培养学生应用意识.

A

正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角

④ 注意: (1)在不引起混淆的情况下, “角 α ”或“∠α ”可以简化成“α ” ; (2)零角的终边与始边重合,如果 α 是零角 α =0° ; (3)角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念: 利用摩天轮的构思引入 小孩甲在摩天轮 A 位置,A 位置与水平线所成角 30° ,转动 2 周后小孩甲的 位置? 假若摩天轮每分钟转 30° ,15 分钟后小孩的位置? 要求这些问题用初中所学 0° ~360° 角能解决吗? ① 定义:若将角顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终 边(端点除外)在第几象限,我们就说这个角是第几象限角. 练习:下列各角:-50° ,405° ,210° ,-200° ,-450° 分别是第几象限的角? ②探究: 在直角坐标系中, 135 °角的终边在什么位置?终边在该位置的角一定是 135°吗? 在坐标轴上画出 30° ,390° ,-330° ,并找出它们的共同点? 3.终边相同角 动画演示:通过拖动点 D 发现终边相同角之间的内在关系,自习观察 k 的值 以及所转过的圈数之间的内在联系,从而找出终边相同的角的表示。 探究得到终边相同的角都可以表示成一个 0°到 360°的角与 k(k∈Z)个周 角的和 所有与角 α 终边相同的角,连同 α 在内,可构成一个集合: S={ β | β = α + k· 360 ° ,k∈ Z},即任一与角 α 终边相同的角,都可以表示 成角 α 与整个周角的和. 注意: ⑴ k∈ Z

⑵α 是任一角; ⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无 限个,它们相差 360° 的整数倍; ⑷ 角 α + k· 720 ° 与角 α 终边相同,但不能表示与角 α 终边相同的所有角. 练习: (1)始边、终边相同的角:与β 角的始边、终边相同的角的全体是一个如下形式 的集合:_____ (2)判断 ①始边、终边相同的角一定相等。 ( ) ( )

②始边、终边相同的角有无数个,它们彼此相差 360° 的整数倍。 ③始边相同,而且相等的角终边一定相同。 ( )

例 1.在 0° 到 360° 范围内,找出与下列各角终边相等的角,并判断它们是第几象 限角. ⑴ -120° ;⑵ 640 ° ;⑶ -950° 12' . 答:⑴ 240° ,第三象限角;⑵ 280° ,第四象限角;⑶ 129° 48',第二象限角; 例 2. 出来 (1) 60 ° ;(2) -21 ° ;(3) 363 ° 14′ 思考 1:终边在 x 轴非负半轴、非正半轴上角的集合 思考 2:终边在 x 轴上角的集合 思考 3:终边在 y 轴非负半轴、非正半轴上角的集合 思考 4:终边在 y 轴上角的集合 思考 5:终边在坐标轴上角的集合 例3 写出终边在直线 y=x 上的角的集合 S,并把 S 中适合不等式-360°≤ x < 写出与下列各角终边相同的角的集合 S,并把 S 中在-360? ~720? 间的角写

720° 的元素写出来. 思考并完成在第一、二、三、四象限角的集合 例 4 若 a 是第一象限的角,问 2 a , a 所在象限
2

讨论:当 a 在第二、三、四象限时的情况 4.课堂小结

①角的定义; ②角的分类:
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角

③象限角; ④终边相同的角的表示法. ⑤如何在 0 度到 360 度内找与已知角终边相同的角 ⑥如何判断一个角是第几象限角


赞助商链接
相关文章:
1.1.1任意角教案(人教A必修4)
1.1.1任意角教案(人教A必修4) - 第一章 三角函数 1.1 任意角和弧度制 1.1.1 任意角 一、 教学目标: 1、知识与技能 (1)推广角的概念、引入大于 360...
1.1.1任意角教案
1.1.1任意角教案 - 1. 1.1 任意角 一、教学目标:1.理解并掌握任意角、象限角、终边相同的角的定义。 2.会写终边相同的角的集合并且会利用终边相同的角的...
《任意角》教学设计
任意角教学设计 - 《任意角教学设计 教材分析: 本小节是人教版 A 版必修四第一章第一节的内容。角的概念的考查多结合 三角函数的基础知识进行,对求角...
1.1.1任意角教案
1.1.1任意角教案_数学_高中教育_教育专区。1.1.1任意角教案 1.1.1 任意角 教案一、 教材分析 1、本节教材的地位和作用: 本课是数学必修 4 第一章三角...
高任意角教学设计
任意角教学设计 - 任意角教学设计 一.学习目标 1.掌握用“旋转”定义角的概念,理解并掌握正角,负角以,零角以及终边相 同角的概念 2.掌握终边相同角的表示...
优质课:任意角的三角函数教学设计
优质课:任意角的三角函数教学设计 - 任意角的三角函数教学设计 福建师大附中 张春晓 一、教学内容解析 三角函数是描述客观世界中周期性变化规律的重要数学模型,在...
1.1.1任意角 教案
1.1.1任意角 教案_高一数学_数学_高中教育_教育专区。1.1.1 任意角一、教学目标 1、知识与技能 (1)使学生理解任意角的概念,学会在平面内建立适当的坐标 系...
1.1.1任意角 教案(人教A版必修4)
1.1.1任意角 教案(人教A版必修4)_数学_高中教育_教育专区。1.1 任意角和弧度制 1.1.1 任意角 ●三维目标 1.知识与技能 (1)理解任意角(正角、负角、...
任意角教案
任意角教案_高二数学_数学_高中教育_教育专区。任意角的教学设计 2012 级学生:赵婧 教学目标: (一) 知识与技能 理解任意角的概念(包括正角、负角、零角) 与区...
高一数学必修4任意角教案
高一数学必修4任意角教案 - 1.1.1 任意角 教学目标 知识与技能 (1)推广角的概念、引入大于 360°角和负角; (2)理解并掌握正角、负角、零角的定义; (3...
更多相关标签: