当前位置:首页 >> >>

2014-2015学年山西省太原五中高一(上)期末数学试卷

2014-2015 学年山西省太原五中高一(上)期末数学试卷 一、选择题(每小题 3 分,共 36 分,每小题只有一个正确答案) 1. (3.00 分)某学校有男、女学生各 500 名,为了解男、女学生在学习兴趣与业 余爱好方面是否存在显著差异, 拟从全体学生中抽取 100 名学生进行调查, 则宜 采用的抽样方法是( A.抽签法 B.随机数法 ) C.系统抽样法 D.分层抽样法 2. (3.00 分) 从一批产品中任取 3 件, 设 A=“三件全是正品”, B=“三件全是次品”, C=“至少有一件正品”,则下列结论正确的是( A.A 与 C 互斥 B.A 与 B 互为对立事件 C.B 与 C 互斥 D.A 与 C 互为对立事件 3. (3.00 分)为了测算如图阴影部分的面积,作一个边长为 6 的正方形将其包含 在内,并向正方形内随机投掷 800 个点,已知恰有 200 个点落在阴影部分内,据 此,可估计阴影部分的面积是( ) ) A.12 B.9 C.8 D.6 4. (3.00 分)对四组数据进行统计,获得以下散点图,关于其相关系数的比较, 正确的是( ) 第 1 页(共 27 页) A.r2<r4<0<r3<r1 C.r4<r2<0<r3<r1 B.r4<r2<0<r1<r3 D.r2<r4<0<r1<r3 }与 N={α| }之间的 5. (3.00 分)集合 M={α| 关系是( A.M? N ) B.N? M C.M=N D.M∩N=? 6. (3.00 分) 将参加数学夏令营的 1000 名学生编号如下:0001,0002, 0003,…, 1000,采用系统抽样方法抽取一个容量为 50 的样本,求得间隔数 k= , 即每 20 人抽取一个人.在 0001 到 0020 中随机抽得的号码为 0015,从 0601 到 0785 被抽中的人数为( A.8 B.9 ) C.10 D.11 7. (3.00 分)从甲乙两个城市分别随机抽取 16 台自动售货机,对其销售额进行 统计, 统计数据用茎叶图表示 (如图所示) , 设甲乙两组数据的平均数分别为 ,中位数分别为 m 甲,m 乙,则( ) , A. C. ,m 甲>m 乙 ,m 甲>m 乙 B. D. ,m 甲<m 乙 ,m 甲<m 乙 8. (3.00 分)已知 A 是⊙O 上一定点,在⊙O 上其他位置任取一点 B,连接 A、B 两点,所得弦的长度大于等于⊙O 的半径的概率为( A. B. C. D. ) ) 9. (3.00 分)若运行所给程序输出的值是 16,则输入的实数 x 值为( 第 2 页(共 27 页) A.32 B.8 C.﹣4 或 8 D.4 或﹣4 或 8 10. (3.00 分)如图所示的程序框图描述的算法称为欧几里得辗转相除法,若输 入 m=2010,n=1541,则输出的 m 的值为( ) A.2010 B.1541 C.134 D.67 11. (3.00 分)执行如图所示的程序框图,如果输出 S=3,那么判断框内应填入 的条件是( ) 第 3 页(共 27 页) A.k≤6 B.k≤7 C.k≤8D.k≤9 12. (3.00 分)利用随机模拟方法计算 y=x2+1 与 y=5 围成的面积时,先利用计算 器产生两组 0~1 之间的均匀随机数 a1=RAND,b1=RAND,然后进行平移与伸缩 变换 a=4a1﹣2,b=4b1+1,实验进行了 1000 次,前 998 次中落在所求面积区域内 的样本点数为 624, 若最后两次实验产生的 0~1 之间的均匀随机数为 (0.3, 0.1) , (0.9,0.7) ,则本次模拟得到的面积的估计值是( A.10 B. C. D. ) 二、填空题(每小题 3 分,共 12 分) 13. (3.00 分)点 P 从(1,0)出发,沿单位圆 x2+y2=1 逆时针方向运动 到达 Q 点,则 Q 点的坐标为 . 弧长 14. (3.00 分)某一总体有 5 位成员,其身高分别为(单位:cm)172,174,175, 176, 178, 今随机抽样 3 人, 则抽到平均身高等于总体平均身高的概率为 . 15. (3.00 分) 对于 n∈N*, 将 n 表示为 n=a0×2k+a1×2k﹣1+a2×2k﹣2+…+ak﹣1×21+ak ×20,当 i=0 时,ai=1,当 1≤i≤k 时,ai 为 0 或 1.记 I(n)为上述表示中 ai 为 0 的个数(例如 5=1×22+0×21+1×20,故 I(5)=1) ,则 I(65)= . 16. (3.00 分)某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽 取 1000 人进行了一次生活习惯是否符合低碳观念的调查,从年龄段[40,55]的 第 4 页(共 27 页) 人群中采用分层抽样法抽取 6 人参加户外低碳体验活动, 其中选取 2 人作为领队, 则选取的 2 名领队中至少有 1 人年龄在[40,45)岁的概率为 三、解答题(共 52 分) 17. (10.00 分)某算法的程序框图如图所示,其中输入的变量 x 在 1,2,3,…, 24 这 24 个整数中等可能随机产生. (Ⅰ) 分别求出按程序框图正确编程运行时输出 y 的值为 i 的概率 P( 2, 3) ; i i=1, (Ⅱ) 甲、 乙两同学依据自己对程序框图的理解, 各自编写程序重复运行 n 次后, 统计记录了输出 y 的值为 i(i=1,2,3)的频数.以下是甲、乙所作频数统计表 的部分数据. 甲的频数统计表(部分) 运行 输出 y 的值 输出 y 的值 输出 y 的值 次数 n 为 1 的频数 为 2 的频数 为 3 的频数 30 … 2100 14 … 1027 6 … 376 10 … 697 乙的频数统计表(部分) 运行 输出 y 的值 输出 y 的值 输出