当前位置:首页 >> 初二数学 >>

3.1.1两角和与差的余弦公式学案


3.1.1 两角差的余弦公式
郸城一高 杨祖峰 探究一: (1)能不能不用计算器求值 : cos 45
0 0 0 0
0 0 0

, cos 30

, cos15

(2) cos(45 ? 30 ) = cos 45 ? cos 30 是否成立? 探究二:两角差的余弦公式的推导 1.三角函数线法: 问:①怎样作出角 α 、 β 、 α ? β 的终边。 ②怎样作出角 α ? β 的余弦线 OM ③怎样利用几何直观寻找 OM 的表示式。 2.向量法: 问:①结合图形,明确应选哪几个向量,它们怎么表示? ② 怎样利用向量数量积的概念和计算公式得到结果。 ③ 对探索的过程进一步严谨性的思考和处理,从而得到合理的科学结论。 例题整理 例1. 利用差角余弦公式求 cos15 的值
0

变式训练:利用两角差的余弦公式证明下列诱导公式: (1) cos(

π
2

? α ) = sin α ;

(2) cos(2π ? α ) = cos α

例2.已知sinα=

4 π 5 ,α ∈ ( ,π),cosβ= ,β第三象限角,求cos(α ? β)的值 5 2 13

变式训练:已知 sin θ =

15 π ,θ 是第二象限角,求 cos θ ? )的值 。 ( 17 3

一、反思总结 本节主要考察如何用任意角 α,β 的正弦余弦值来表示 cos(α ? β ) ,回顾公 式

C α ? β) 的推导过程,观察公式的特征,注意符号区别以及公式中角 α , β (
用心 爱心 专心 1

的任意性,特别要注意公式既可正用、逆用,还可变用(即要活用).在求值的过程 中,还要注意掌握“变角”和“拆角”的思想方法解决问题. 二、当堂检测 1.利用两角和(差)的余弦公式,求 cos 75 , cos105 2.求值
0 0

cos 750 cos 30 0 + sin 75 0 sin 30 0
+ β ) cos β + sin(α + β ) sin β

3.化简 cos(α

1 5 4.已知α,β 为锐角, α = , (α + β) cos sin = 3 ,求cosβ 7 14
课后练习与提高 一、选择题 1. cos 50 cos 20 + sin 50 sin 20 的值为
0 0 0 0





A.

1 2

B.

1 3

C.

3 2


D.

3 3

2. cos( ?150 ) 的值为



A.

2? 6 B. 4

6? 2 C. 4

6+ 2 6+ 2 D ? . 4 4


3.已知 cos α =

π 12 ? π? , α ∈ ? 0, ? ,则 cos(α ? ) 的值等于( 4 13 ? 2?
17 2 C. 26 7 2 26
D.

A.

5 2 13

B.

7 2 13

二、填空题 4.化简 cos(α + 300 ) cos α + sin(α + 300 ) sin α = 5.若 a = (cos 60 , sin 60 ), b = (cos 15 , sin 15 ), a ? b =
0 0 0 0

三、解答题、 6.已知 sin α = ?

2 ? 3π ,α ∈ ? π , 3 2 ?

3 π ? 求 ? ,cos β = , β ∈ (0, ) , cos(α ? β ) 的 4 2 ?
2

用心 爱心 专心

值. 课后练习答案 1.C 2.C 3.B 4.

3 2

5.

2 2

6.解:由 sin α = ?

2 ? 3π ,α ∈ ? π , 3 2 ?

5 ? ; ? ,得 cos α = ? 3 ?

又由 cos β =

3 π 7 , β ∈ (0, ) ,得 sin β = ; 4 2 4
3 5+2 7 12

因此, cos(α ? β ) = cos α cos β + sin α sin β = ?

用心 爱心 专心

3


相关文章:
高中数学3.1.1两角和与差的余弦公式学案新人教A版必修4.doc
高中数学3.1.1两角和与差的余弦公式学案新人教A版必修4 - §3.1.1 两
...3.1.1 两角和与差的正弦、余弦和正切公式 学案.doc
高中数学 必修四 3.1.1 两角和与差的正弦、余弦和正切公式 学案_数学_高中教育_教育专区。3.1.1 两角和与差的正弦、余弦和正切公式(学案)一、学习目标 1.会...
3.1.1两角差的余弦公式(教、学案).doc
3.1.1两角差的余弦公式(教、学案) - 3. 1.1 两角差的余弦公式 一、教材分析 《两角差的余弦公式》是人教 A 版高中数学必修 4 第三章《三角恒等变换》第...
3.1.1两角和与差的余弦公式学案.doc
学案学案隐藏>> 3.1.1 两角差的余弦公式郸城一高 杨祖峰 探究
3.1.1两角和与差的余弦公式-导学案.doc
3.1.1两角和与差的余弦公式-导学案 - 导学案 年级: 高一 科目: 数学
数学必修4教学案:3.1.1两角差的余弦公式(教、学案).doc
数学必修4教学案:3.1.1两角差的余弦公式(教、学案) - 3.1.1 两角差的余弦公式教案 授课教师:xxx 一、教材分析 《两角差的余弦公式》是人教 A 版高中数学必修...
高中数学人教b版必修4学案:3.1.1 两角和与差的余弦 含解析.doc
高中数学人教b版必修4学案:3.1.1 两角和与差的余弦 含解析_数学_高中教育_教育专区。3.1 3.1.1 和角公式 两角和与差的余弦 1.能利用向量的数量积推导出两角...
3.1.1 两角差的余弦公式 学案(人教A版必修4).doc
3.1.1 两角差的余弦公式 学案(人教A版必修4)_高一数学_数学_高中教育_教育...之间和与差的关系问题.然后利用公式 化简求值. 变式训练 1 求下列各式的值. ...
高中数学人教b版必修4学案:3.1.1 两角和与差的余弦 含解析.doc
高中数学人教b版必修4学案:3.1.1 两角和与差的余弦 含解析_数学_高中教育_教育专区。3.1 3.1.1 和角公式 两角和与差的余弦 1.能利用向量的数量积推导出两角...
3.1.1两角差的余弦公式(教、学案).doc
3.1.1两角差的余弦公式(教、学案) - 3.1.1 两角差的余弦公式 一、教材分析 《两角差的余弦公式》是人教 A 版高中数学必修 4 第三章《三角恒等变换》第一节...
3.1.1两角和与差的余弦学案学生版.doc
3.1.1两角和与差的余弦学案学生版 - 扬州大学附属中学东部分校导学案 高一数学 主备: 刘安兰 2014.2 总第___课时 课题:§3.1.1 两角和与差的余弦 班级_...
...章三角恒等变换3.1.1两角的和与差的余弦公式学案新....doc
高中数学第三章三角恒等变换3.1.1两角和与差的余弦公式学案新人教A版必修4 - 两角和与差的余弦公式 学习目标 重点难点 方法 一、 掌握两角和与差的余弦公式...
两角和与差的余弦公式学案.doc
高一数学《必修 4》 导学案 1 高一___班 第___组 姓名___ §3.1.1 【课前导学】 两角和与差的余弦公式 学习目标: 1、理解用向量方法推导两角差的余弦...
高中数学第三章三角恒等变换3.1.1两角和与差的余弦学案....doc
高中数学第三章三角恒等变换3.1.1两角和与差的余弦学案苏教版必修4 - 3.1.1 学习目标 两角和与差的余弦 1.了解两角差的余弦公式的推导过程 .2.理解用向量法...
...第3章 三角恒等变换 3.1.1 两角和与差的余弦学案 苏....doc
高中数学 第3章 三角恒等变换 3.1.1 两角和与差的余弦学案 苏教版必修4_高三数学_数学_高中教育_教育专区。3.1.1 两角和与差的余弦 1.能利用向量的数量积...
...3.1 和角公式 3.1.1 两角和与差的余弦学案 新人教B....doc
高中数学 第三章 三角恒等变换 3.1 和角公式 3.1.1 两角和与差的余弦学案 新人教B版必修4_高三数学_数学_高中教育_教育专区。3.1.1 基础知识 两角和与差的...
高中数学第三章三角恒等变换3.1.1两角和与差的余弦学案新人教B版....doc
高中数学第三章三角恒等变换3.1.1两角和与差的余弦学案新人教B版必修4 3.1 3.1.1 [学习目标] 和角公式 两角和与差的余弦 1.了解两角差的余弦公式的推导过程....
3.1.2两角和与差的正弦、余弦、正切公式(教、学案).doc
3.1.2两角和与差的正弦、余弦、正切公式(教、学案) - 语文数学英语,全册上册下册,期中考试,期末考试,模拟考试,单元测试,练习说课稿,备课教案学案导学案
数学人教B版必修43.1.1两角和与差的余弦学案缺答案.pdf
数学人教B版必修43.1.1两角和与差的余弦学案缺答案_高中教育_教育专区。3.1.1两角和与差的余弦公式一.学习要点:两角和与差的余弦公式及其简单应用。 二.学习...
...三角恒等变换3.1.1两角和与差的余弦学案新人教B版必修4.doc
2017_2018学年高中数学第三单元三角恒等变换3.1.1两角和与差的余弦学案新人教B版必修4_数学_高中教育_教育专区。3.1.1 学习目标 两角和与差的余弦 1.了解两角...
更多相关标签: