当前位置:首页 >> 数学 >>

2.5.1等比数列的前n项和(第1课时)

备课教案 课 课 题 型 2.5.1 等比数列的 前 n 项和 主备人 汇课地点 宋升贇 参与教师 汇课时间 何东亮、姚志远、 赵斌斌、孟文杰 新授课 高中数学办 公室 三维目标 (法制渗透) 1.知识与技能 等比数列前 n 项和公式;等比数列前 n 项和公式及其获取思路;会用等比数列 的前 n 项和公式解决一些简单的与前 n 项和有关的问题。 2.过程与方法 等比数列前 n 项和公式及其获取思路; 会用等比数列的前 n 项和公式解决一些 简单的与前 n 项和有关的问题。 3.情感、态度与价值观 提高学生的推理能力;培养学生应用意识。 教学重点: 等比数列前 n 项和公式的理解、推导及应用。 教学难点: 灵活应用等比数列前 n 项公式解决一些简单的有关问题。 观察、思考、交流、讨论、概括 共 2 课时 投影仪、直尺、彩色粉笔 重难点 教法方法 课时安排 教学准备 教学过程 第 1 课时 等比数列的前 n 项和公式 授课时间: 一、复习引入: 1.等比数列的定义. 2. 等比数列的通项公式: an ? a1 ? q n?1 (a1 ? q ? 0) , 个性化设计 an ? am ? q m?1 (a1 ? q ? 0) 3. { an }成等比数列 ? a n ?1 ? =q( n ? N ,q≠0) an ≠0 an 4.性质:若 m+n=p+q, am ? an ? a p ? aq 二、新课讲授: (一)提出问题 :关于国际相棋起源问题 62 63 例如:怎样求数列 1,2,4,?2 ,2 的各项和? 即求以 1 为首项,2 为公比的等比数列的前 64 项的和,可表示为: 1 S64 ? 1 ? 2 ? 4 ? 8? ? 262 ? 263 ① 2 S64 ? 2 ? 4 ? 8 ? 16? ? 263 ? 264 ② 由②—①可得: S 64 ? 2 64 ? 1 这种求和方法称为“错位相减法” , “错位相减法”是研究数列求 和的一个重要方法. (二)怎样求等比数列前 n 项的和? 公式的推导方法一: 一般地,设等比数列 a1 , a2 ? a3 ,?an ?它的前 n 项和是 S n ? a1 ? a2 ? a3 ? ?an 由? ?S n ? a1 ? a 2 ? a3 ? ? a n n ?1 ?a n ? a1 q 得 2 n?2 n ?1 ? ?S n ? a1 ? a1 q ? a1 q ? ? a1 q ? a1 q ? 2 3 n ?1 n ? ?qSn ? a1 q ? a1 q ? a1 q ? ? a1 q ? a1 q ? (1 ? q)S n ? a1 ? a1q n ∴当 q ? 1 时, S n ? a ? an q a1 (1 ? q n ) ①或 S n ? 1 ② 1? q 1? q 当 q=1 时, S n ? na1 公式的推导方法二: 由定义, a a 2 a3 ? ? ? ? n ? q 由等比的性质, a1 a2 an?1 a 2 ? a3 ? ? ? a n S ? a1 ? n ?q a1 ? a2 ? ? ? an?1 S n ? an 即 S n ? a1 ? q ? (1 ? q)S n ? a1 ? an q (结论同上) S n ? an 围绕基本概念,从等比数列的定义出发,运用等比定理,导出了公式. 公式的推导方法三: S n ? a1 ? a2 ? a3 ? ?an = a1 ? q(a1 ? a2 ? a3 ? ?an?1 ) = a1 ? qSn?1 = a1 ? q(S n ? an ) 2 ? (1 ? q)S n ? a1 ? an q (结论同上) “方程”在代数课程里占有重要的地位,方程思想是应用十分广泛的 一种数学思想,利用方程思想,在已知量和未知量之间搭起桥梁,使问 题得到解决. (三)等比数列的前 n 项和公式: 当 q ? 1 时, S n ? a ? an q a1 (1 ? q n ) ①或 S n ? 1 ②当 q=1 时, 1? q 1? q S n ? na1 思考:什么时候用公式(1) 、什么时候用公式(2)? (当已知 a1, q, n 时用公式①;当已知 a1, q, an 时,用公式②.) 三、例题讲解及练习 例 1:求下列等比数列前 8 项的和. (1) 1 1 1 , , ,? 2 4 8 (2) a1 ? 27, a9 ? 1 ,q ? 0 243 解:由 a1= 1 1 1 1 , q ? ? ? , n ? 8, 得 4 2 2 2 8 1 ? ?1? ? ?1 ? ? ? ? 2? ? ?2? ? ? 255 S8 ? ? . 1 256 1? 2 例 2:某商场第一年销售计算机 5000 台,如果平均每年的售价比上一年 增加 10%, 那么从第一年起, 约几年内可使总销售量达到 30000 台 (保 留到个位)? 解: 根据题意, 每年销售量比上一年增加的百分率相同, 所以从第一年起, 每年的销售量组成一个等比数列{an},其中 a1=5000, q ? 1 ? 10% ? 1.1, Sn ? 30000 , 于 是 得 到 5000(1 ? 1.1n ) ? 30000 . 1 ? 1.1 整理得 1.1 ? 1.6. 两边取对数 , 得 n lg1.1 ? g1.6 n 用计算器算得 n ? 5 (年). 答:约 5 年内可以使总销售量达到 30000 台. 例 3.求数列 1 , 2 , 3 , 4 1 2 1 4 1 8 1 ,....前 n 项的和。 16 3 例 4:求求数列 1, 3a, 5a 2 , 7a 3 ,....,(2n ? 1)a n ?1 的前 n 项的和。 练习:教材第 58 面练习第 1 题 四、课堂小结: (由学生归纳总结) 1. 等比数

相关文章:
2.5.1等比数列的前n项和(第一课时)_图文.ppt
2.5.1等比数列的前n项和(第一课时) - 2.5 等比数列的前n项和 回顾
2.5-1等比前n项和第1课时.ppt
2.5-1等比前n项和第1课时 隐藏>> 知识回顾 an ?1 ? ⑴{an}成等比数列 ? ? (n ? N , q ? 0)an ? 0 q an (2) 通项公式: a n ? a1 ? q...
2.5.1等比数列的前n项和(第一课时).ppt
同系列文档 等比数列的性质(第2课时) 2.3等差数列的前n项和(整理...1/2 相关文档推荐 2.5.1 等比数列前n项和(第... 16页 1财富值 2[1].5__等比...
2.5 等比数列的前n项和(第1课时).ppt
2.5 等比数列的前n项和(第1课时)_高三数学_数学_高中教育_教育专区。2.5 等比数列的前n项和(第1课时) 创设情境,提出问题 话说灰太狼想在森林里开一个公司,...
1-导学案(2.5.1 等比数列前n项和 共2课时).doc
2.5 等比数列的前 n 项和 2.5.1 等比数列前 n 项和公式的推导与应用 一本节教学分析 第一课时,师生将共同分析探究等比数列的前 n 项和公式,公式的推导以...
2.5 等比数列的前n项和(第一课时).doc
数列 2.5 等比数列的前 n 项和(第一课时) 宁夏中卫市 中卫一中 王希东
高中数学 2.5等比数列的前n项和(第一课时)教案 新人教A....doc
高中数学 2.5等比数列的前n项和(第一课时)教案 新人教A版必修5_数学_高中
(必修5优秀课件)2.5等比数列的前n项和(第一课时).ppt
(必修5优秀课件)2.5等比数列的前n项和(第一课时) 隐藏>> 回
2-【精品课件】2.5等比数列的前n项和(第1课时)(2)_图文.ppt
2-【精品课件】2.5等比数列的前n项和(第1课时)(2) - 复习等比数列的有
新人教版必修5 2.5等比数列的前n项和(第一课时)_图文.ppt
新人教版必修5 2.5等比数列的前n项和(第一课时) - 回顾 1、等比数列的定
2.5等比数列的前n项和(第一课时2)_图文.ppt
2.5等比数列的前n项和(第一课时2) - 回顾 1、等比数列的定义: an a2 a3 ? ?? ? ? ? ? q(q为非0常数) a1 a2 an?1 2、通项公式: an ? a1...
2.5等比数列的前n项和 (3课时)_图文.ppt
2.5等比数列的前n项和 (3课时) - 2.5 等比数列的前n项和 第一课时 问题提出 ? 1 ? 5730 p?? ? ?2? t 1.等比数列的内涵特征是什么? 如何用 递推...
20080911高二数学(2.5-1等比数列的前n项和)_图文.ppt
20080911高二数学(2.5-1等比数列的前n项和) - 2.5 等比数列的前n 等比数列的前n项和 第一课时 问题提出 ? 1 ? 5730 p=? ? ?2? t 1.等比...
2012高中数学 2.5等比数列的前n项和(第1课时)教案 新人....doc
2012高中数学 2.5等比数列的前n项和(第1课时)教案 新人教A版必修5_高
2.5 第1课时 等比数列的前n项和_图文.ppt
2.5 第1课时 等比数列的前n项和_医学_高等教育_教育专区。2.5 等比数列的前n项和第1课时 等比数列的前n项和 1.掌握等比数列的前n项和公式, 2.掌握前n项...
2.5.等比数列的前n项和-第一课时.ppt
2.5等比数列的前n项和(第1... 19页 免费 2.5等比数列的前n项和 (3课.....等比数列的前n第一课时 阿凡提为国王给出了以下数列: 1,283 2, 4 4,......
2.5《等比数列前n项和》课件优秀课件)._图文.ppt
2.5《等比数列前n项和》课件优秀课件). - 等比数列的前n项和 (第一课时) 长沙市六中 钟辅君 等比数列的前n项和 一、教材分析 二、目标分析 三、过程分析 ...
2.5等比数列的前n项和_(3课时)_图文.ppt
2.5等比数列的前n项和_(3课时) - 2.5 等比数列的前n项和 第一课时 问题提出 1.等比数列的定义是什么? 这一定义如 何用数学符号表示? 如果一个数列从第2...
8.示范教案(2.5.1 等比数列前n项和公式的推导与应用).doc
8.示范教案(2.5.1 等比数列前n项和公式的推导与应用)_数学_高中教育_教育...它的首项 是 1,公比是 2,求第 1 个格子到第 64 个格子所放的麦粒数总和...
2.5.1 等比数列的前n项和(1)_图文.ppt
2.5.1 等比数列的前n项和(1) - §2.5等比数列的前n项和(1) 高老
更多相关标签: