当前位置:首页 >> >>

平面向量练习题10


向量练习
1 设 0 ≤ θ < 2π ,已知两个向量 OP = (cos θ , sin θ ) , 1

OP2 = (2 + sin θ , 2 ? cos θ ) ,则向量 P1 P2 长度的最大值是(
A
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c



特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

2

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

3

C

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

3 2

D

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

2 3


2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

若三点 A(2,3), B (3, a ), C (4, b) 共线,则有( A
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

a = 3, b = ?5

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

a ? b +1 = 0


C

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

2a ? b = 3

D

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

a ? 2b = 0

3

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

下列命题正确的是( A 单位向量都相等
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

B C

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

若 a 与 b 是共线向量, b 与 c 是共线向量,则 a 与 c 是共线向量(



新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

| a + b | =| a ? b | ,则 a ? b = 0
若 a 0 与 b0 是单位向量,则 a0 ? b0 = 1
0

D 4
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

已知 a , b 均为单位向量,它们的夹角为 60 ,那么 a + 3b = ( A
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c



特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

7

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

10

C

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

13

D

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

4

5

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

已知向量 a , b 满足 a = 1, b = 4, 且 a ? b = 2 , 则 a 与 b 的夹角为 A
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

π
6

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

π
4

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

C

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

π
3

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

D

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

π
2
)

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

若平面向量 b 与向量 a = (2,1) 平行,且 | b |= 2 5 ,则 b = ( A
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

(4,2)

B

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

(?4,?2)

C

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

(6,?3)

D

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

(4,2) 或 (?4,?2)

二、填空题
1
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

已知向量 a = (cos θ ,sin θ ) ,向量 b = ( 3, ?1) ,则 2a ? b 的最大值是

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

2 3 4 5

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

若 A(1, 2), B (2, 3), C ( ?2, 5) ,试判断则△ABC 的形状_________ 若 a = (2, ?2) ,则与 a 垂直的单位向量的坐标为__________ 若向量 | a |= 1,| b |= 2,| a ? b |= 2, 则 | a + b |=
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

平面向量 a, b 中,已知 a = (4, ?3) , b = 1 ,且 a ib = 5 ,则向量 b = ______

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

三、解答题

1

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

已知 a , b , c 是三个向量,试判断下列各命题的真假

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

1

(1)若 a ? b = a ? c 且 a ≠ 0 ,则 b = c

(2)向量 a 在 b 的方向上的投影是一模等于 a cos θ ( θ 是 a 与 b 的夹角),方向与 a 在 b 相同或相反的一个向量
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

2

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

证明:对于任意的 a, b, c, d ∈ R ,恒有不等式 ( ac + bd ) 2 ≤ ( a 2 + b 2 )(c 2 + d 2 )

3

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

平面向量 a = ( 3, ?1), b = ( ,

1 3 ) ,若存在不同时为 0 的实数 k 和 t ,使 2 2

x = a + (t 2 ? 3)b , y = ? ka + tb , 且 x ⊥ y ,试求函数关系式 k = f (t )

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

2


赞助商链接
相关文章:
平面向量练习题
平面向量练习题 1. 下列命题正确的是 A.单位向量都相等 B.长度相等且方向相反...2.已知向量 a、b 不共线,实数 x、y 满足向量等式 3xa+(10-y)b=2xb+(...
高考经典练习题平面向量
高考经典练习题平面向量 - 高考经典练习题 平面向量 2013 年高考题 1. ( 2013 年普通高等学校招生统一考试辽宁数学(理)试题)已知 ...
《平面向量》测试题及答案
BC+BC?CA+CA?AB的值. 3 2 2 2 2 4 学大教育 《平面向量测试题参考答案 1.B 2.A 3.C 4.C 5.A 6.D 7.D 8.A 9.C 10.B 11.A 12.C ...
三角函数和平面向量练习题10
三角函数和平面向量练习题10 主要是三角函数和平面向量的习题主要是三角函数和平面向量的习题隐藏>> 三角函数和向量练习 三角函数和向量练习填空题 1 新新新 新新新...
平面向量经典练习题 非常好
平面向量经典练习题 非常好_数学_高中教育_教育专区。平面向量练习题一、选择题...10 ,则△ABC 是直角三角形的概率为( 6. 已知 k ? Z , A. ) 1 7 B...
平面向量经典习题汇总
平面向量经典习题汇总_数学_高中教育_教育专区。平面向量经典习题汇总 1.(北京理...选 B 2 10.(宁夏海南理.9) 【解析】 cos ? a, b ?? 已知 O,N,P ...
平面向量练习题及答案
平面向量练习题及答案_数学_高中教育_教育专区。平面向量练习题一.填空题 1. ...a,b 的夹角为 120 ,且|a|=2,|b|=5,则(2a-b) ·a=___ 10. 设 a...
必修4《平面向量》测试题及答案
必修4《平面向量测试题及答案_高一数学_数学_高中教育_教育专区。平面向量一...(第 10 题) 11.已知向量 OA =(k,12), OB =(4,5), OC =(-k,10)...
平面向量练习题
平面向量练习题 - 平面向量练习题 一、选择题 【共 8 道小题】 1、下列说法中正确的是( ) A.两个单位向量的数量积为 1 C. 2、设 e 是单位向量, =2e...
平面向量练习题
平面向量练习题平面向量练习题一 1.已知 | AB |= 6, | AC |= 4 ,则 | BC | 的取值范围为( (A) ( 2,8) (B) [ 2,8] (C) (2,10) (...
更多相关标签: