当前位置:首页 >> 数学 >>

2013高考风向标文科数学一轮课时知能训练:第3章 第6讲 函数与方程


第6讲

函数与方程

?-x ?x≤0?, ? 1.(2011 年浙江)设函数 f(x)=? 2 若 f(a)=4,则实数 a=( ? ?x>0?. ?x

)

A.-4 或-2 B.-4 或 2 C.-2 或 4 D.-2 或 2 2.由下表知 f(x)=g(x)有实数解的区间是( ) x

0 1 2 3 -1 f(x) 3.011 5.432 5.980 7.651 -0.677 g(x) 3.451 4.890 5.241 6.892 -0.530 A.(-1,0) B.(0,1) C.(1,2) D.(2,3) 3.设函数 f(x)=x3-4x+3+lnx(x>0),则 y=f(x)( ) 1? ?1 ? A.在区间?0,2?,?2,2?内均无零点 ? 1 1 B.在区间?0,2?,?2,2?内均有零点 ? ? ? ? 1? 1 C.在区间?0,2?内无零点,在区间?2,2?内有零点 ? ? ? 1? 1 ? D.在区间?0,2?内有零点,在区间?2,2?内无零点 ? ? 4.(2011 年陕西)函数 f(x)= x-cosx 在[0,+∞)内( ) A.没有零点 B.有且仅有一个零点 C.有且仅有两个零点 D.有无穷多个零点 5.若关于 x 的方程 x2+2kx-1=0 的两根 x1,x2 满足-1≤x1<0<x2<2,则 k 的取值范围 是( ) 3 3 3 3 A.?-4,0? B.?-4,0? C.?0,4? D.?0,4? ? ? ? ? ? ? ? ? * 2 6.(2011 年陕西)设 n∈N ,一元二次方程 x -4x+n=0 有整数根的充要条件是 n= ______. 2 7.函数 f(x)=ln(x+2)- 的零点所在区间是(n,n+1),则正整数 n=____. x 8. 下面是用区间二分法求方程 2sinx+x-1=0 在[0,1]内的一个近似解(误差不超过 0.001) 的算法框图,如图 K3-6-1 所示,则判断框内空白处应填入____________,才能得到需要 的解.

图 K3-6-1

9.已知关于 x 的二次方程 x2+2mx+2m+1=0. (1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求 m 的范围; (2)若方程两根均在区间(0,1)内,求 m 的范围.

10.已知函数 f(x)=ex+2x2-3x. (1)求证:函数 f(x)在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应 x 的近似值(误差不超过 0.2); (2)当 x≥1 时,若关于 x 的不等式 f(x)≥ax 恒成立,试求实数 a 的取值范围(参考数据 e≈2.7, e≈1.6,e0.3≈1.3).

第6讲

函数与方程

1.B 2.B 3.B 4.B 解析:方法一:数形结合法,令 f(x)= x-cosx=0,则 x=cosx,设函数 y= x 和 y=cosx,它们在[0,+∞)的图象如图 D40,显然两函数的图象的交点有且只有一个,所 以函数 f(x)= x-cosx 在[0,+∞)内有且仅有一个零点.

图 D40 π π 方法二: x∈?2,+∞?上, x>1, 在 cosx≤1, 所以 f(x)= x-cosx>0.在 x∈?0,2?, ? ? ? ? f′(x) π π +sinx>0,所以函数 f(x)= x-cosx 是增函数,又因为 f(0)=-1,f?2?= >0,所 ? ? 2 2 x π 以 f(x)= x-cosx 在 x∈?0,2?上有且只有一个零点. ? ? 5.B 6.3 或 4 7.1 8.f(a)· 0)<0 f(x 9. (1)依题意, 解: 抛物线 f(x)=x2+2mx+2m+1 与 x 轴的交点分别在区间(-1,0)和(1,2) 内,画出示意图,如图 D41,得 = 1

图 D41

?f?0?=2m+1<0, ?f?-1?=2>0, ?f?1?=4m+2<0, ?f?2?=6m+5>0 ?

? ?m∈R, ?? 1 m<- , 2 ?m>-5. ? 6
1 m<- , 2 1 m>- , 2

5 1 ∴- <m<- . 6 2 (2)据抛物线与 x 轴交点落在区间(0,1)内,列不等式组

? ?f?1?>0, ?Δ≥0, ?0<-m<1 ?
f?0?>0,

? ? 1 ??m>-2, m≥1+ ?-1<m<0.2或m≤1- ?

1 ∴- <m≤1- 2 2,

2.

[这里 0<-m<1 是因为对称轴 x=-m 在区间(0,1)内] 10.解:(1)f′(x)=ex+4x-3, ∵f′(0)=e0-3=-2<0,f′(1)=e+1>0,

∴f′(0)· f′(1)<0. 令 h(x)=f′(x)=ex+4x-3,则 h′(x)=ex+4>0, ∴f′(x)在区间[0,1]上单调递增. ∴f′(x)在区间[0,1]上存在唯一零点. ∴f(x)在区间[0,1]上存在唯一的极小值点. 取区间[0,1]作为起始区间,用二分法逐次计算如下: ①∵f′(0.5)≈0.6>0,f′(0)<0, ∴极值点所在区间是[0,0.5]. ②又 f′(0.3)≈-0.5<0,∴极值点所在区间是[0.3,0.5]. ③∵|0.5-0.3|=0.2, ∴区间[0.3,0.5]内任意一点即为所求. (2)由 f(x)≥ax,得 ax≤ex+2x2-3x. ex+2x2-3x ∵x≥1,∴a≤ . x x 2 e +2x -3x ?x-1?ex+2x2 令 g(x)= ,则 g′(x)= . x x2 ∵x≥1,∴g′(x)>0.∴g(x)在[1,+∞)上单调递增. ∴gmin(x)=g(1)=e-1, ∴a 的取值范围是 a≤e-1.


相关文章:
2013高考风向标文科数学一轮课时知能训练:第3章 第6讲 函数与方程
学​一​​课​时​知​能​训​练​,​分​章​节...第6讲 函数与方程 ?-x ?x≤0?, ? 1.(2011 年浙江)设函数 f(x)=? ...
2013高考风向标文科数学一轮基础知识反馈卡:第3章 第6讲 函数与方程)
2013高考风向标文科数学一轮基础知识反馈卡:第3章 第6讲 函数与方程)_高中教育_教育专区。2013高考风向标文科数学一轮基础知识反馈卡:第3章 第6讲 函数与方程)基...
2013高考风向标文科数学一轮课时知能训练:第3章 第7讲 抽象函数)
2013高考风向标文科数学一轮课时知能训练:第3章 第7讲 抽象函数)_高中教育_教育专区。2013高考风向标文科数学一轮课时知能训练:第3章 第7讲 抽象函数)第...
高考风向标文科数学一轮课时知能训练第6讲
高考风向标文科数学一轮课时知能训练:第 6 讲 三角函数的求值、化简与证明 1.计算 sin43° cos13° -sin13° cos43° 的值等于( 1 3 2 3 A. B. C....
高考风向标文科数学一轮课时知能训练第6讲
高考风向标文科数学一轮课时知能训练:第 6 讲 三角函数的求值、化简与证明 1.计算 sin43° cos13° -sin13° cos43° 的值等于( 1 3 2 3 A. B. C....
高考风向标文科数学一轮课时知能训练第6讲
高考风向标文科数学一轮课时知能训练:第 6 讲 化简与证明 三角函数的求值、 1.计算 sin43° cos13° -sin13° cos43° 的值等于( 1 3 2 3 A. B. C...
高考风向标文科数学一轮课时知能训练第6讲
高考风向标文科数学一轮课时知能训练: 第6讲 化简与证明 三角函数的求值、 1.计算 sin43° cos13° -sin13° cos43° 的值等于( 1 3 2 3 A. B. C....
高考风向标文科数学一轮课时知能训练第6讲
高考风向标文科数学一轮课时知能训练第6讲_数学_高中教育_教育专区。高考风向标文科数学一轮课时知能训练:第 6 讲 求值、化简与证明 三角函数的 1.计算 sin43°...
2013高考风向标文科数学一轮课时知能训练:第3章 第5讲 函数的图象)
2013高考风向标文科数学一轮课时知能训练:第3章 第5讲 函数的图象)_高中教育_...(x),则函数 y=f(x)的图 象是( ) A B C D 6.方程 lgx=sinx 的实...
2013高考风向标文科数学一轮课时知能训练:第3章 第8讲 函数模型及其应用)
2013高考风向标文科数学一轮课时知能训练:第3章 第8讲 函数模型及其应用)_高中教育_教育专区。2013高考风向标文科数学一轮课时知能训练:第3章 第8讲 函数模型及其...
更多相关标签:
函数与方程讲义 | 方程的根与函数的零点 | 函数与方程 | matlab解三角函数方程 | matlab解方程函数 | 数理方程与特殊函数 | 函数与方程ppt | 三角函数方程 |