当前位置:首页 >> 数学 >>

高一数学必修一2.1.2指数函数及其性质


前提测评
② a ?? a
n

实数 ① anm (a >0) 的运算中n可以是些什么数?
n m

a
r

?

m n

?

1 a
m n

?

1
n

(a ? 0, n, m ? N ? , n ? 1)
(a ? 0, n, m ? N ? , n ? 1)

③ 指数运算法则: (1) a a ?
s

am

a
s

r?s r ?s

(a ? 0, r , s ? R) (a ? 0, r , s ? R) (a ? 0, r , s ? R) (a ? 0, b ? 0, r ? R) (a ? 0, b ? 0, r ? R)

? 2? a

r

?a ?
r

(3) (a r ) s ?

(4) (ab) ? r b r b ? 5? ( a ) ? r

a rs a r r ab

展示目标
(1)知识目标: 掌握指数函数的概念、图象和性质; (2)能力目标: 体会分类思想、数形结合思想;培养分析、比 较、抽象、概括的思维能力; (3)情感目标: 激发学习数学应用数学的兴趣,培养勇于 探索的创新精神 .

导学达标
探究:
观察下列函数有什么共同的特征?

① y ? 1.073

x

1 x ② y?( ) 4

③ y?2

?x

1 x ?( ) 2

⒈这是一个幂的形式,自变量x在指数位置上, ⒉底数是一个大于0且不等于1的常量 ⒊整个幂的前面的系数为1.

形如这样的函数叫做指数函数

1.指数函数的定义 一般地,函数 y= ax (a >0且a ≠1)叫做指数函数,

其中x是自变量,定义域是R。

为什么规定底数a大于0且不等于1?
(1)

a ? 1, y ? 1x ? 1是一个常量,对于它 没有研究的必要

(2)

如果a ? 0, 则当x ? 0时, a x ? 0; 当x ? 0时,a 无意义
x

(3)

1 1 如果a ? 0,例如y ? (?4) , 则x ? , x ? 时, 2 4 在实数范围之内函数值 不存在
x

下列函数中,哪些是指数函数?

1、y ? 4

x x

2、y ? x 4、y ? 4

4

3、y ? ?4

x ?1

1

用描点法来作出函数 y ? 2 和 y ? 3x , y ? 4 的图像.
x
x x

图像都在x轴上方(y >0), 向上无限伸展,向下无限 接近于x轴 x∈R

y?4 ? y ? 3x x ?y ? 2

图像都经过点(0,1) f ? 0? ? 1
? ?

非奇非偶函数

都是增函数

?

?

? ?

? ? ?

?
?

?

底数越大,向上的方 向越靠近y轴

1 x 1 x 1 x 用描点法来作出函数 y ? ( ) 和 y ? ( ) , y ? ( ) 的图像. 3 4 2 1 x
y?( ) 4 1 x y? ? ( 3) 1
图像都在x轴上方(y >0), 向上无限伸展,向下无限 接近于x轴 x∈R 图像都经过点(0,1) f ? 0? ? 1

y ? ( )x 2

非奇非偶函数
?

底数越小,向上的方 向越靠近y轴

?

?
?

都是减函数
? ?

y?4 y ? 3x y ? 2x
x

y ? ( )x 2

1 x y?( ) 4 1 x y?( ) 1 3

y?a

x

a ? 1 ? 增函数

0 ? a ? 1 ? 减函数

1 x y?( ) 2

y ? 2x

p′ (-x,y)

P (x,y)

1 x y ? a 与 y ? ( ) ? a ? 0 且 a ? 1?的图象 关于y 对称 a
x

a ?1
图 y

0?a?1

y ? ax
y=1 x

y ? ax

y y=1 x


定义域: 性 值域:

(0,1) O R

(0,1) O

定义域:

(0,??)

R

奇偶性: 非奇非偶函数 单调性: 在R上是增函数 定点: 过点(0,1) 质 底数越大,向上的方向越靠 近y轴

值域: (0,??) 奇偶性: 非奇非偶函数 单调性:在R上是减函数 定点: 过点(0,1) 底数越小,向上的方向越 靠近y轴



若图象C1,C2,C3,C4对应y=ax,y=bx, y=cx,y=dx,则( ) A.0<a<b<1<c<d B.0<b<a<1<d<c C.0<d<c<1<b<a D.0<c<d<1<a<b

D

达标测评
判断: 下列函数是指数函数的是(
A. y=2a x (a>0且a≠1) B. y=ax+k (a>0且a≠1,k∈Z)

C



C. y=( 1 ) x (a>0且a≠1)
a

D. y=(a2-1)x (a∈R)。

判断下列函数在(?∞,+∞)内是增函数, 还是减函数? x 1 x x 3 y ? ( ) y ? 4 ( 2 ) y ? 2 (1) (3) 解: (1)因为4>1,所以函数 y ? 4x
在(?∞,+∞)内是增函数; (2) 因为 0 ? 1 ? 1 ,所以函数 4 在(?∞,+∞)内是减函数; x (3) 由于 2 3 ? ( 3 2) x ,并且
x 3
3

4

2 ?1

所以函数 y ? 2 在(?∞,+∞)内是增函数.

例题讲解
例6 已知指数函数 f ? x? ? ax ? a ? 0, 且a ? 1? 的图象经过点

? 3,? ?,求

f ? 0? , f ?1? , f ? ?3? 的值。

例7 比较下列各题中两个值的大小:

⑴ 1 .7

2. 5

1.7
0 .9

3



0.8

?0.1
1 3

0.8

?0.2

⑶ 1 .7 1 1 3 (5) ( ) 2

0.3

3.1
2 3

1 ( ) 指数型数大小比较的方法: 5

2 (4) ( ) 3

1 ( ) 2

1 3

① 底数相同,指数不同,利用单调性比较。

② 指数相同,底数不同,利用图象变化规律规律比
较 ③指数不同,底数不同,引入第三个数进行比较。
底数一增一减引入1, 底数同增同减化为指数相同进行比较。

探究
1、已知a ? 0.8 , b ? 0.8 , c ? 1.2 ,
0.7 0.9 0.8

用“<?

2、下列关系正确的是( 1 A、 ( ) 2 1 1 3 B、 ( ) 2 2 1 3 C、 ( ) 5 2 1 3 D、 ( ) 5
2 3



1 1 ?( ) ?( ) 5 2 2 2 1 3 1 3 ?( ) ?( ) 2 5 1 2 1 3 1 3 ?( ) ?( ) 2 2 2 1 1 3 1 3 ?( ) ?( ) 2 2

2 3

1 3

例8、截止到1999年底,我国人口约13亿。如果今 后能将人口年平均增长率控制在1%,那么经过20年 后,我国人口数最多为多少(精确到亿)? 年份 1999 2000 2001 2002 … 1999+x 经过年数 0 1 2 3 … x 人口数(亿) 13 13(1+1%) 13(1+1%)2 13(1+1%)3 … y=13(1+1%)x

当 x = 20时,y=13(1+1%)20≈16亿

破产啦!

微不足道的数 字怎么会变得 这么巨大啊?

韦伯与百万富翁杰 米定了一项合同, 在整整一个月中, 韦伯每天给杰米10 万元,杰米第一天 给韦伯1分钱,以 后每天给韦伯的钱 是前一天的两倍

同学们算一算,一个月满后谁会赢钱?
计算


相关文章:
高中数学必修1-2.1.2《指数函数及其性质》同步练习(2)
高中数学必修1-2.1.2指数函数及其性质》同步练习(2)_高一数学_数学_高中教育_教育专区。2.1.2指数函数及其性质》同步练习(2)一、选择题 1.函数 y=2x ...
高中数学必修1-2.1.2《指数函数及其性质》同步练习(1)
高中数学必修1-2.1.2指数函数及其性质》同步练习(1)_高一数学_数学_高中...2.1.2指数函数及其性质》同步练习(1)一、选择题 1.下列各函数中,是指数...
高中数学必修一《2.1.2指数函数及其性质》导学案
高中数学必修一2.1.2指数函数及其性质》导学案_数学_高中教育_教育专区。高中数学必修一2.1.2指数函数及其性质》导学案 2.1.2 指数函数及其性质 【学习...
高中数学 2.1.2 指数函数及其性质教案 新人教A版必修1
高中数学 2.1.2 指数函数及其性质教案 新人教A版必修1_其它课程_小学教育_教育专区。2.1.2 指数函数及其性质 (第一课时) 教学目标:1、理解指数函数的概念 2...
高中数学必修1-2.1.2《指数函数及其性质》同步练习(3)
高中数学必修1-2.1.2指数函数及其性质》同步练习(3)_高一数学_数学_高中教育_教育专区。2.1.2指数函数及其性质》同步练习(3)一、选择题 1.函数 f(x)...
高一数学必修1-指数函数及其性质-第一,二-课时
高一数学必修1-指数函数及其性质-第一,-课时_小学作文_小学教育_教育专区。...1 个这样的细胞分裂次 后,得到的细胞个数与的函数关系式是: . 这个函数便是...
高中数学 2.1.2指数函数及其性质(1)精讲精析 新人教A版...
高中数学 2.1.2指数函数及其性质(1)精讲精析 新人教A版必修1_数学_高中教育_教育专区。课题:指数函数及其性质(1) 精讲部分学习目标展示 (1)理解指数函数的...
高中数学 2.1.2指数函数及其性质(2)精讲精析 新人教A版...
高中数学 2.1.2指数函数及其性质(2)精讲精析 新人教A版必修1_数学_高中教育_教育专区。课题:2.1.2 指数函数及其性质(2) 精讲部分学习目标展示 (1)掌握...
人教A版数学必修一2.1.2《指数函数及其性质》(1)导学案
人教A版数学必修一2.1.2《指数函数及其性质》(1)导学案_数学_高中教育_教育专区。2.1.2指数函数及其性质(1) ★学习目标 1. 了解指数函数模型的实际背景,...
高一数学:2.1.2《指数函数及其性质(2)》教案(新人教A版...
高一数学:2.1.2指数函数及其性质(2)》教案(新人教A版必修1)_数学_高中教育_教育专区。高一数学:2.1.2指数函数及其性质(2)》教案 ...
更多相关标签: