当前位置:首页 >> 其它课程 >>

初一数学教研课公开课赛课必备资料 第七讲:平面直角坐标系


初一数学教研课公开课赛课必备资料

第七讲:平面直角坐标系
一、知识要点:
1、特殊位置的点的特征 (1)各个象限的点的横、纵坐标符号 (2)坐标轴上的点的坐标: x 轴上的点的坐标为 ( x,0) ,即纵坐标为 0;

y 轴上的点的坐标为 (0, y ) ,即横坐标为 0;
2、具有特殊位置的点的坐标特征

设P 1 ( x1 , y1 ) 、 P 2 ( x2 , y 2 )

P 1、P 2 两点关于 x 轴对称 ? x1 ? x 2 ,且 y1 ? ? y 2 ; P 1、P 2 两点关于 y 轴对称 ? x1 ? ? x 2 ,且 y1 ? y 2 ; P 1、P 2 两点关于原点轴对称 ? x1 ? ? x 2 ,且 y1 ? ? y 2 。
3、距离 (1)点 A ( x, y ) 到轴的距离:点 A 到 x 轴的距离为| y |;点 A 到 y 轴的距离为| x |; (2)同一坐标轴上两点之间的距离: A ( x A ,0) 、B ( x B ,0) ,则 AB ?| x A ? x B | ;A (0, y A ) 、B (0, y B ) ,则 AB ?| y A ? y B | ;

二、典型例题
1、已知点 M 的坐标为(x,y) ,如果 xy<0 , 则点 M 的位置( ) (A)第二、第三象限 (B)第三、第四象限 (C)第二、第四象限 (D)第一、第四象限 2.点 P(m,1)在第二象限内,则点 Q(-m,0)在( ) A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上 3.已知点 A(a,b)在第四象限,那么点 B(b,a)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限

4.点 P(1,-2)关于 y 轴的对称点的坐标是( ) A. (-1,-2) B. (1,2) C. (-1,2) D. (-2,1) 5.如果点 M(1-x,1-y) 在第二象限,那么点 N(1-x,y-1)在第 点 Q(x-1,1-y)在第 象限。 6.如图是中国象棋的一盘残局,如果用(4,o)表示帅的位置, 用(3,9)表示将的位置,那么炮的位置应表示为 A.(8,7) B.(7,8) C.(8,9)D.(8,8)

象限,

7.在平面直角坐标系中,平行四边形 ABCD 的顶点 A、B、D 的坐标分别为(0,0) , (5,0) , (2,3)则顶点 C 的坐标为( )

A. (3,7) B. (5,3) C. (7,3) D. (8,2) 8.已知点 P(x, x ) ,则点 P 一定 A.在第一象限 ( ) D.不在 x 轴下方

B.在第一或第四象限 C.在 x 轴上方

9.已知长方形 ABCD 中,AB=5,BC=8,并且 AB∥x 轴,若点 A 的坐标为(-2,4) ,则点 C 的坐标为___(3,-4)(-7,-4)(3,12)(-7,12)______。 10.三角形 ABC 三个顶点的坐标分别是 A(-4,-1) ,B(1,1) ,C(-1,4) ,将三角形 ABC 向右平移 2 个单位长度,再向上平移 3 个单位长度,则平移后三个顶点的坐标是( C ) A. (2,2) , (3,4) , (1,7) B. (-2,2) , (4,3) , (1,7) C. (-2,2) , (3,4) , (1,7) D. (2,-2) , (3,3) , (1,7) 11. “若点 P、 Q 的坐标是 (x1, y1) 、 (x2, y2) , 则线段 PQ 中点的坐标为 (

x1 ? x2 y1 ? y2 , ) . ” 2 2

已知点 A、B、C 的坐标分别为(-5,0) 、 (3,0) 、 (1,4) ,利用上述结论求线段 AC、 BC 的中点 D、E 的坐标,并判断 DE 与 AB 的位置关系. 解:由“中点公式”得 D(-2,2) ,E(2,2) ,DE∥AB.
4) , 12. 如图, 在平面直角坐标系中,A 点坐标为 (3, 将 OA

绕 原点 O 逆 时 针旋 转 90? 得 到 OA ? , 则点 A? 的 坐 标是 ( ) ( ? 3) B. ( ?3, 4) C. (3, ? 4) D. (4, ? 3) A. 4, 分析:

13.如图,三角形 AOB 中,A、B 两点的坐标分别为(-4,-6) , (-6,-3) ,求三角形 AOB 的面积 解:做辅助线如图.

S△AOB=S 梯形 BCDO-(S△ABC+S△OAD) =

1 1 1 ×(3+6)×6-( ×2×3+ ×4×6)=27-(3+12)=12. 2 2 2

14.如图,四边形 ABCD 各个顶点的坐标分别为 (–2,8) , (–11,6) , (–14,0) , (0,0) 。 (1)确定这个四边形的面积,你是怎么做的? (2)如果把原来 ABCD 各个顶点纵坐标保持不变, 横坐标增加 2,所得的四边形面积又是多少? 分析:

(1)80 (2)面积不变 15.如图,已知 A1(1,0)、 A2(1,1) 、A3(-1,1) 、A4(-1,-1) 、 A5(2,-1) ,?,则点 A2007 的坐标为______________________. 答案:(-502,502)

y

A10 A7 A3 A4 A8 A2 A6

o

A1 A5 A9

x


相关文章:
初一数学教研课公开课赛课必备资料 第七讲:平面直角坐标系
初一数学教研课公开课赛课必备资料 第七讲:平面直角坐标系一、知识要点: 1、特殊位置的点的特征 (1)各个象限的点的横、纵坐标符号 (2)坐标轴上的点的坐标:...
初一数学教研课公开课赛课必备资料 第四讲:图形的初步认识
初一数学教研课公开课赛课必备资料 第四讲:图形的初步认识一、相关知识链接: 1.认识立体图形和平面图形 我们常见的立体图形有长方体、正方体、球、圆柱、圆锥,...
初一数学教研课公开课赛课必备资料 第五讲:线段和角
初一数学教研课公开课赛课必备资料 第五讲:线段和角_数学_小学教育_教育专区。初一数学教研课公开课赛课必备资料 第五讲:线段和角一、知识结构图线段的比较和...
初一数学教研课公开课赛课必备资料 第十讲:二元一次方程组
初一数学教研课公开课赛课必备资料 第十讲:二元一次方程组一、相关知识点 1、 二元一次方程的定义: 经过整理以后,方程只有两个未知数,未知数的次数都是 1,...
初一数学教研课公开课赛课必备资料 第十一讲:一元一次不等式
初一数学教研课公开课赛课必备资料 第十一讲:一元一次不等式一、知识链接: 1.不等式的基本性质 通过对比不等式和方程的性质,使学生学会用类比的方法看问题。 ...
unit 7 how do you make a banana milk shake公开课、教研课和赛课必备基础知识提要
unit 7 how do you make a banana milk shake公开课教研课赛课必备基础知识提要_初二英语_英语_初中教育_教育专区。公开课教研课赛课必备基础知识提要 ...
初一数学教研课公开课赛课必备资料 第十二讲:一元一次不等式(组)的应用
初一数学基础知识 初一数学教研课公开课赛课必备资料 第十二讲:一元一次不等式(组)的应用一、能力要求: 1.能够灵活运用有关一元一次不等式(组)的知识,特别是有...
初一数学教研课公开课赛课必备资料 第三讲:与一元一次方程有关的问题
初一数学教研课公开课赛课必备资料 第三讲:与一元一次方程有关的问题一、知识回顾一元一次方程是我们认识的第一种方程, 使我们学会用代数解法解决一些用算术解法不...
平面直角坐标系公开课教案
平面直角坐标系公开课教案_初一数学_数学_初中教育_教育专区。平面直角坐标系 课堂评估教案 2012—2013 学年第一学期课题 科目 数学 单位 平面直角坐标系龙门中学 ...
初中数学教师个人晒课赛课计划_
初中数学教师个人晒课赛课计划__教学案例/设计_教学研究_教育专区。初中数学教师个人晒课赛课计划_ 初中数学教师晒课赛课计划为了参加国培举办的“一师一优课,一...
更多相关标签:
教研组公开课总结 | 数学教研组公开课计划 | 公开课教研活动简报 | 教研活动公开课主持稿 | 浙江教研网天天公开课 | 公开课教研活动方案 | 教研组公开课安排表 | 教研组公开课简报 |