当前位置:首页 >> 数学 >>

高中数学文科选修1-1知识点总结


第一章:命题与逻辑结构
知识点:
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、 “若 p ,则 q ”形式的命题中的 p 称为命题的条件, q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个 命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若 p ,则 q ” ,它的逆命题为“若 q ,则 p ”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否 定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若 p ,则 q ” ,则它的否命题为“若 ? p ,则 ? q ”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否 定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否 命题. 若原命题为“若 p ,则 q ” ,则它的逆否命题为“若 ? q ,则 ? p ”. 6、四种命题的真假性: 原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假 四种命题的真假性之间的关系:

?1? 两个命题互为逆否命题,它们有相同的真假性; ? 2 ? 两个命题为互逆命题或互否命题,它们的真假性没有关系.

7、若 p ? q ,则 p 是 q 的充分条件, q 是 p 的必要条件. 若 p ? q ,则 p 是 q 的充要条件(充分必要条件) . 8、用联结词“且”把命题 p 和命题 q 联结起来,得到一个新命题,记作 p ? q . q 都是真命题时,p ? q 是真命题; q 两个命题中有一个命题是假命题时,p ? q 当p、 当p、 是假命题. 用联结词“或”把命题 p 和命题 q 联结起来,得到一个新命题,记作 p ? q . 当 p 、 q 两个命题中有一个命题是真命题时, p ? q 是真命题;当 p 、 q 两个命题都是假 命题时, p ? q 是假命题. 对一个命题 p 全盘否定,得到一个新命题,记作 ? p . 若 p 是真命题,则 ? p 必是假命题;若 p 是假命题,则 ? p 必是真命题. 9、短语“对所有的” 、 “对任意一个”在逻辑中通常称为全称量词,用“ ? ”表示. 含有全称量词的命题称为全称命题. 全称命题“对 ? 中任意一个 x ,有 p ? x ? 成立” ,记作“ ?x ? ? , p ? x ? ” . 短语“存在一个” 、 “至少有一个”在逻辑中通常称为存在量词,用“ ? ”表示. 含有存在量词的命题称为特称命题. 特称命题“存在 ? 中的一个 x ,使 p ? x ? 成立” ,记作“ ?x ? ? , p ? x ? ” . 是特称命题. 考点:1、充要条件的判定 2、命题之间的关系 10、全称命题 p : ?x ? ? , p ? x ? ,它的否定 ? p : ?x ? ? , ?p ? x ? .全称命题的否定

1

★1.命题“对任意的 x ? R,x ? x ? 1≤ 0 ”的否定是(
3 2


2

A.不存在 x ? R,x ? x ? 1≤ 0
3 2

B.存在 x ? R,x ? x ? 1≤ 0
3

C.存在 x ? R,x ? x ? 1 ? 0
3 2

D.对任意的 x ? R,x ? x ? 1 ? 0
3 2

★2、给出命题:若函数 y=f(x)是幂函数,则函数 y=f(x)的图象不过第四象限,在它的逆命题、 否命题、逆否命题三个命题中,真命题的个数是 (A)3 (B)2 (C)1 (D)0

★3. 已知α , β 表示两个不同的平面, m 为平面α 内的一条直线, 则 “? ? ? ” 是 “m ? ? ” 的( ) B.必要不充分条件 C.充要条件 D.既不充分也不必要条件

A.充分不必要条件

第二章:圆锥曲线 知识点:
1、 平面内与两个定点 F (大于 F ) 的点的轨迹称为椭圆. 这 1 ,F 2 的距离之和等于常数 1F 2 两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在 x 轴上 焦点在 y 轴上

图形

标准方程

x2 y 2 ? ? 1? a ? b ? 0 ? a 2 b2
? a ? x ? a 且 ?b ? y ? b

y 2 x2 ? ? 1? a ? b ? 0 ? a 2 b2
?b ? x ? b 且 ? a ? y ? a

范围

?1 ? ?a,0? 、 ?2 ? a,0?
顶点

?1 ? 0, ?a ? 、 ?2 ? 0, a ? ?1 ? ?b,0? 、 ?2 ? b,0?
长轴的长 ? 2 a

?1 ? 0, ?b? 、 ?2 ? 0, b ?
短轴的长 ? 2b

轴长 焦点 焦距 对称性

F1 ? ?c,0? 、 F2 ? c,0?

F1 ? 0, ?c ? 、 F2 ? 0, c ?

F1 F2 ? 2c ? c 2 ? a 2 ? b 2 ?
关于 x 轴、 y 轴、原点对称

2

离心率

e?
a2 c

c b2 ? 1 ? 2 ? 0 ? e ? 1? a a
y?? a2 c

准线方程

x??

3、设 ? 是椭圆上任一点,点 ? 到 F 1 对应准线的距离为 d1 ,点 ? 到 F2 对应准线的距离为

d2 ,则

?F1 d1

?

?F2 d2

? e.

4、平面内与两个定点 F )的点的轨迹 1, F 2 的距离之差的绝对值等于常数(小于 F 1F 2 称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 5、双曲线的几何性质: 焦点在 y 轴上 焦点的位置 焦点在 x 轴上

图形

标准方程

x2 y 2 ? ? 1? a ? 0, b ? 0 ? a 2 b2
x ? ?a 或 x ? a , y ? R

y 2 x2 ? ? 1? a ? 0, b ? 0 ? a 2 b2
y ? ?a 或 y ? a , x ? R

范围 顶点 轴长 焦点 焦距 对称性 离心率

?1 ? ?a,0? 、 ?2 ? a,0?
虚轴的长 ? 2b

?1 ? 0, ?a ? 、 ?2 ? 0, a ?
实轴的长 ? 2 a

F1 ? ?c,0? 、 F2 ? c,0?

F1 ? 0, ?c ? 、 F2 ? 0, c ?

F1 F2 ? 2c ? c 2 ? a 2 ? b 2 ?
关于 x 轴、 y 轴对称,关于原点中心对称

e?
a2 c
b x a

c b2 ? 1 ? 2 ? e ? 1? a a
y??
y??

准线方程

x??
y??

a2 c
a x b

渐近线方程

6、实轴和虚轴等长的双曲线称为等轴双曲线.
3

7、设 ? 是双曲线上任一点,点 ? 到 F 1 对应准线的距离为 d1 ,点 ? 到 F2 对应准线的距离 为 d2 ,则

?F1 d1

?

?F2 d2

? e.

8、平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹称为抛物线.定点 F 称为 抛物线的焦点,定直线 l 称为抛物线的准线. 9、抛物线的几何性质:

y 2 ? 2 px
标准方程

y 2 ? ?2 px

x2 ? 2 py

x 2 ? ?2 py

? p ? 0?

? p ? 0?

? p ? 0?

? p ? 0?

图形

顶点

? 0, 0 ?
x轴
? p ? F ? ,0? ?2 ?
x?? p 2
y轴

对称轴

焦点

? p ? F ? ? ,0? ? 2 ?
x? p 2
e ?1

p? ? F ? 0, ? 2? ?
y?? p 2

p? ? F ? 0, ? ? 2? ?
y? p 2

准线方程

离心率

范围

x?0

x?0

y?0

y?0

10、过抛物线的焦点作垂直于对称轴且交抛物线于 ? 、 ? 两点的线段 ?? ,称为抛物线的 “通径” ,即 ?? ? 2 p .

考点:1、圆锥曲线方程的求解
2、直线与圆锥曲线综合性问题 3、圆锥曲线的离心率问题

典型例题:★★1.设 O 是坐标原点, F 是抛物线 y 2 ? 2 px( p ? 0) 的焦点, A 是抛物线
上的一点, FA 与 x 轴正向的夹角为 60 ,则 OA 为( )

A.

21 p 4

B.

21 p 2

C.

13 p 6
4

D.

13 p 36

★★2.与直线 x ? y ? 2 ? 0 和曲线 x2 ? y 2 ?12x ?12 y ? 54 ? 0 都相切的半径最小的圆的
标准方程是 .

★★★3. (本小题满分 14 分) 已知椭圆 C 的中心在坐标原点, 焦点在 x 轴上, 椭圆 C 上的点到焦点距离的最大值为 3,
最小值为 1. (1)求椭圆 C 的标准方程; (2)若直线 l : y ? kx ? m 与椭圆 C 相交于 A,B 两点( A,B 不是左右顶点) ,且以 AB 为直径的图过椭圆 C 的右顶点.求证:直线 l 过定点,并求出该定点的坐标.

第三章:导数及其应用 知识点:
1、若某个问题中的函数关系用 f ? x ? 表示,问题中的变化率用式子

f ? x2 ? ? f ? x1 ? x2 ? x1

?

f ? x2 ? ? f ? x1 ? ?f 表示,则式子 称为函数 f ? x ? 从 x1 到 x2 的平均变化率. ?x x2 ? x1 f ? x2 ? ? f ? x1 ? ?f ,则称它为函数 ? lim ?x ?0 ?x x2 ? x1
0

2 、函数 f ? x ? 在 x ? x0 处的瞬时变化率是 lim

?x ?0

y ? f ? x? 在 x ? x0 处的导数,记作 f ? ? x0 ? 或 y? x ? x ,即
f ? ? x0 ? ? lim f ? x0 ? ?x ? ? f ? x0 ? . ?x

?x ?0

3、函数 y ? f ? x? 在点 x0 处的导数的几何意义是曲线 y ? f ? x? 在点 ? x0 , f ? x0 ? 处的切 线的斜率.曲线 y ? f ? x? 在点 ? x0 , f ? x0 ? 处的切线的斜率是 f ? ? x0 ? ,切线的方程为

?

?

?

?

y ? f ? x0 ? ? f ? ? x0 ?? x? x 0 ? .若函数在 x0 处的导数不存在,则说明斜率不存在,切线的方
程为 x ? x0 . 4、若当 x 变化时, f ? ? x ? 是 x 的函数,则称它为 f ? x ? 的导函数(导数) ,记作 f ? ? x ? 或 y? , 即 f ? ? x ? ? y? ? lim
?x ?0

f ? x ? ?x ? ? f ? x ? . ?x

5、基本初等函数的导数公式:

?1? 若 f ? x ? ? c ,则 f ? ? x ? ? 0 ; ? 2 ? 若 f ? x ? ? x n ? x ? Q* ? ,则 f ? ? x? ? nxn?1 ;

? 3? 若 f ? x ? ? sin x ,则 f ? ? x? ? cos x ; ? 4 ? 若 f ? x? ? cos x ,则 f ? ? x? ? ? sin x ; ? 5? 若 f ? x ? ? a x ,则 f ? ? x? ? ax ln a ; ? 6 ? 若 f ? x ? ? ex ,则 f ? ? x ? ? ex ;
5

? 7 ? 若 f ? x ? ? loga x ,则 f ? ? x ? ? x ln a ; ?8? 若 f ? x ? ? ln x ,则 f ? ? x ? ? x .
6、导数运算法则:

1

1

?1?
? 2?

? ? ? f ? x ? ? g ? x ?? ? ? f ? ? x ? ? g? ? x ? ; ? ? ? f ? x ? ? g ? x ?? ? ? f ? ? x? g ? x ? ? f ? x ? g? ? x ? ;

? f ? x ? ?? f ? ? x ? g ? x ? ? f ? x ? g ? ? x ? ? g ? x ? ? 0? . ? 3? ? g x ? ? 2 g x ? ? ? ? ? ? ?? ? ?
7、对于两个函数 y ? f ?u ? 和 u ? g ? x ? ,若通过变量 u , y 可以表示成 x 的函数,则称这 个函数为函数 y ? f ?u ? 和 u ? f ? x ? 的复合函数,记作 y ? f g ? x ? . 复合函数 y ? f g ? x ? 的导数与函数 y ? f ?u ? , u ? g ? x ? 的导数间的关系是

?

?

?

?

? ? y? x ? yu ? ux .
8 、在某个区间 ? a, b ? 内,若 f ? ? x ? ? 0 ,则函数 y ? f ? x? 在这个区间内单调递增;若

f ? ? x ? ? 0 ,则函数 y ? f ? x ? 在这个区间内单调递减.
9、点 a 称为函数 y ? f ? x ? 的极小值点, f ? a ? 称为函数 y ? f ? x ? 的极小值;点 b 称为函 数 y ? f ? x ? 的极大值点, f ? b ? 称为函数 y ? f ? x ? 的极大值.极小值点、极大值点统称为 极值点,极大值和极小值统称为极值. 10、求函数 y ? f ? x ? 的极值的方法是:解方程 f ? ? x ? ? 0 .当 f ? ? x0 ? ? 0 时:

?1? 如果在 x0 附近的左侧 f ? ? x ? ? 0 ,右侧 f ? ? x ? ? 0 ,那么 f ? x0 ? 是极大值;
? 2 ? 如果在 x0 附近的左侧 f ? ? x ? ? 0 ,右侧 f ? ? x ? ? 0 ,那么 f ? x0 ? 是极小值.
11、求函数 y ? f ? x ? 在 ? a, b? 上的最大值与最小值的步骤是:

?1? 求函数 y ? f ? x? 在 ? a, b ? 内的极值;
? 2 ? 将函数 y ? f ? x? 的各极值与端点处的函数值 f ? a ? , f ? b ? 比较,其中最大的一个是最
大值,最小的一个是最小值.

考点:1、导数在切线方程中的应用
2、导数在单调性中的应用
6

3、导数在极值、最值中的应用 4、导数在恒成立问题中的应用

典型例题
★1.(05 全国卷Ⅰ)函数 f ( x) ? x ? ax ? 3x ? 9 ,已知 f ( x) 在 x ? ?3 时取得极值,则
3 2

a =(
A.2

) B. 3 C. 4 D.5 )

★2.函数 y ? 2x 3 ? 3x 2 ? 12x ? 5 在[0,3]上的最大值与最小值分别是( A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 16

★★★3.(根据 04 年天津卷文 21 改编)已知函数 数,当 x ? 1 时 f ( x) 取得极值-2.

f ( x) ? ax3 ? cx ? d (a ? 0)

是 R 上的奇函

(1)试求 a、c、d 的值; (2)求 f ( x) 的单调区间和极大值; ★ ★ ★ 4. ( 根 据 山 东 2008 年 文 21 改 编 ) 设 函 数 f ( x) ? x e
2 x ?1

? ax3 ? bx2 , 已 知

x ? ?2和x ? 1 为 f ( x) 的极值点。
(1)求 a , b 的值; (2)讨论 f ( x) 的单调性;

7


相关文章:
人教版高中数学选修1-1知识点总结
人教版高中数学选修1-1知识点总结_高二数学_数学_高中教育_教育专区。人教版...高中数学文科选修1-2知识... 2页 免费 高中数学选修2-2知识点总... 3页...
人教版高中数学选修1-1知识点总结(全)
人教版高中数学选修1-1知识点总结(全)_数学_高中教育_教育专区。高中数学选修 1-1 知识点总结第一章 简单逻辑用语 ? 命题:用语言、符号或式子表达的,可以判断...
人教版高中数学选修1-1知识点总结(全)
人教版高中数学选修1-1知识点总结(全)_高一数学_数学_高中教育_教育专区。高中数学选修 1-1 知识点总结第一章 简单逻辑用语 ? 命题:用语言、符号或式子表达的...
高中数学(文科)选修1-1、1-2知识点归纳
高中数学(文科)选修1-1、1-2知识点归纳_数学_高中教育_教育专区。选修 1-1、1-2 数学知识点第一部分 简单逻辑用语 1、命题:用语言、符号或式子表达的,可以...
高中数学选修1-1知识点总结
高中数学选修1-1知识点总结_数学_高中教育_教育专区。高中数学选修 1-1 知识...高中数学选修2-1知识点总... 8页 免费 高中数学文科选修1-2知识... 6页...
(文科)高中数学选修1-1、1-2、4-4重要知识点
(文科)高中数学选修1-1、1-2、4-4重要知识点_高三数学_数学_高中教育_教育...东北师大附中理科学霸高中化学选修5笔记1028988份文档 教学总结精品范文 ...
高中数学选修1-1知识点归纳
高中数学选修1-1知识点归纳_数学_高中教育_教育专区。高中数学选修 1-1 知识点总结 第一章 简单逻辑用语 1、命题: 真命题:判断为真的语句. 假命题:判断为假...
高中数学选修1-1知识点归纳1#
高中数学选修1-1知识点归纳1#_高一数学_数学_高中教育_教育专区。高中数学选修...高中数学文科选修1-2知识... 6页 免费 高中数学必修二 选修2-1... 4页 ...
1高中数学文科选修1-2知识点总结
1高中数学文科选修1-2知识点总结_数学_高中教育_教育专区。高中数学选修 1-2 知识点总结第一章 统计案例 1.线性回归方程 ①变量之间的两类关系:函数关系与相关...
高中数学选修1-1、1-2知识点归纳
高中数学选修1-1、1-2知识点归纳_数学_高中教育_教育专区。高中数学选修 1-1、1-2 数学知识点一 简单的逻辑用语 1.原命题: “若 p ,则 q ” ;逆命题:...
更多相关标签: