当前位置:首页 >> 数学 >>

2012年高考真题汇编——理科数学:不等式


2012 高考真题分类汇编:不等式
1.【2012 高考真题重庆理 2】不等式 A. ? ?

x ?1 ? 0 的解集为 2x ?1
? ? 1? ? ? ?1,?? ? 2?
D. ? ? ?,? ? ? ?1,?? ? 对 2

? 1 ? ,1? ? 2 ?

B. ? ?

>
? 1 ? ,1? ? 2 ?

C. ? ? ?. ?

? ?

1? ?

【答案】A 【解析】原不等式等价于 ( x ? 1)( 2 x ? 1) ? 0 或 x ? 1 ? 0 ,即 ? 等式的解为 ?

1 ? x ? 1 或 x ? 1 ,所以不 2

1 ? x ? 1 ,选 A. 2
B.若 2a+2a=2b+3b,则 a>b D.若 2a-2a=ab-3b,则 a<b
[来源:学科网 ZXXK]

2.【2012 高考真题浙江理 9】设 a 大于 0,b 大于 0. A.若 2a+2a=2b+3b,则 a>b C.若 2a-2a=2b-3b,则 a>b 【答案】A
b 【 解 析 】 若 2a ? 2a ? 2b ? 3b , 必 有 2a ? 2 ? 2 ? b . 构 造 函 数 : f ? x ? ? 2x ? 2 x , 则 a 2

f ? ? x ? ? 2x ? l n 2 ? 恒成立, ? 2 0 故有函数 f ? x ? ? 2x ? 2 x 在 x>0 上单调递增, a>b 成立. 即 其

余选项用同样方法排除.故选 A 3.【2012 高考真题四 川理 9】某公司生产甲、乙两种桶装产品。已知生产甲产品 1 桶需耗 A 原料 1 千克、 B 原料 2 千克;生产乙产品 1 桶需耗 A 原料 2 千克, B 原料 1 千克。每桶甲 产品的利润是 300 元,每桶乙产品的利润是 400 元。公司在生产这两种产品的计划中,要求 每天消耗 A 、 B 原料都不超过 12 千克。通过合理安排生产计划,从每天生产的甲、乙两种 产品中,公司共可获得的最大利润是( ) A、1800 元 B、2400 元 C、2800 元 D、3100 元 【答案】C. 【解析】设生产 x 桶甲产品, y 桶乙产品,总利润为 Z,

? x ? 2 y ? 12 ?2 x ? y ? 12 ? 则约束条件为 ? ,目标函数为 Z ? 300 x ? 400 y , x?0 ? ?y ? 0 ?

可行域为 联立方程组 ?

,当目标函数直线经过点 M 时 z 有最大值,

? x ? 2 y ? 12 得 M (4,4) ,代入目标函数得 z ? 2800 ,故选 C. ?2 x ? y ? 12

? x ? 2y ? 2 ? 4.【2012 高考真题山东理 5】已知变量 x, y 满足约束条件 ? 2 x ? y ? 4 ,则目标函数 ? 4 x ? y ? ?1 ?

z ? 3x ? y 的取值范围是
(A) [ ?

[来源:学§科§网 Z§X§X§K]

3 , 6] 2

(C) [?1,6] 【答案】A

3 , ?1] 2 3 (D) [?6, ] 2
(B) [?

【解析】做出不等式所表示的区域如图

,由 z ? 3x ? y 得

y ? 3x ? z ,平移直线 y ? 3x ,由图象可知当直线经过点 E (2,0) 时,直线 y ? 3x ? z 的截
距最小,此 时 z 最大为 z ? 3x ? y ? 6 ,当直线经过 C 点时,直线截距最大,此时 z 最小,

1 ? ?4 x ? y ? ?1 3 3 ?x ? 由? ,解得 ? 2 ,此时 z ? 3x ? y ? ? 3 ? ? ,所以 z ? 3x ? y 的取值范 2 2 ?2 x ? y ? 4 ?y ? 3 ?
围是 [? ,6] ,选 A.

3 2

? x ? y ? 10 ? 5.【2012 高考真题辽宁理 8】设变量 x,y 满足 ?0 ? x ? y ? 20, 则 2 x ? 3 y 的最大值为 ?0 ? y ? 15 ?
(A) 20 【答案】D 【解析】画出可行域,根据图形可知当 x=5,y=15 时 2x+3y 最大,最大值为 55,故选 D 【点评】本题主要考查简单线性规划问题,难度适中。该类题通常可以先作图,找到最优解 求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值。 (B) 35 (C) 45 (D) 55

?y ? 2 ? 6.【2012 高考真题广东理 5】已知变量 x,y 满足约束条件 ? x ? y ? 1 ,则 z=3x+y 的最大值 ?x ? y ? 1 ?
为 A.12 B.11 C.3 D.-1

【答案】B 【解析】画约束区域如图所示,令 z ? 0 得 y ? ?3x ,化目标函数为斜截式方程 y ? ?3x ? z 得,当 x ? 3, y ? 2 时, zmax ? 11 ,故选 B。

7.【2012 高考真题福建理 5】下列不等式一定成立的是

A. B. C.

D. 【答案】C. 【解析】此类题目多选用筛选法,对于A当 x ?

1 时,两边相等,故A错误;对于B具有 4

基 本 不 等 式 的 形 式 , 但 是 sin x 不 一 定 大 于 零 , 故 B 错 误 ; 对 于 C ,

x 2 ? 1 ? 2 | x |? x 2 ? 2 x ? 1 ? 0 ? ( x ? 1) 2 ? 0 ,显然成立;对于D任意 x 都不成立.故选
C. 8.【2012 高考真题江西理 8】某农户计划种植黄瓜和韭菜,种植面积不超过 50 计,投入资 金不超过 54 万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2 万元 0.55 万元 韭菜 6吨 0.9 万元 0.3 万元 为使一年的种植总利润(总利润=总销售收入减去总种植成本)最大,那么黄瓜和韭菜的种 植面积(单位:亩)分别为 A.50,0 B.30,20 C.20,30 D.0,5 0 【答案】B
[来源:学科网]

【命题立意】本题考查函数的简单应用,以及简单的线性规划问题。

? x ? y ? 50 ? 【解析】设黄瓜的种植面积为 x ,韭菜的种植面积为 y ,则有题意知 ?1.2 x ? 0.9 y ? 54 ,即 ? x, y ? 0 ? ? x ? y ? 50 9 ? 目标函数 z ? 0.55 ? 4 x ? 0.3 ? 6 y ? 1.2 x ? 0.9 y ? x ? 作出可行域 y, ?4 x ? 3 y ? 180 , 10 ? x, y ? 0 ?

如图

,由图象可知当直线经过点 E 时,直线

y??
B.

? x ? y ? 50 ? x ? 30 10 10 ,解得 ? ,选 x ? z 的解决最大,此时 z 取得最大值,由 ? 9 9 ?4 x ? 3 y ? 180 ? y ? 20

9.【2012 高考真题湖北理 6】设 a, b, c, x, y, z 是正数,且 a2 ? b2 ? c2 ? 10 ,
x2 ? y 2 ? z 2 ? 40 , ax ? by ? cz ? 20 ,则

a?b?c ? x? y?z

1 4 【答案】C

A.

B.

1 3
2 2

C.

1 2
2

D.

3 4

【解析】由于 (a ? b ? c )( x ? y ? z ) ? (ax ? by ? cz)
2 2
2

2

a b c ? ? ? t , 则 a=t x b=t y c=t z , t 2 ( x 2 ? y 2 ? z 2 ) ? 10 x y z a b c a?b?c a?b?c 所以由题知 t ? 1 / 2 , 又 ? ? ? , 所以 ? t ? 1 / 2 ,答案选 C. x y z x? y?z x? y?z
等号成立当且仅当 10.【2012 高考真题福建理 9】 若函数 y=2 图像上存在点(x,y)满足约束条件
x

? x? y ?3? 0 ? ? x ? 2 y ? 3 ? 0 ,则实数 m 的最大值为 ? x?m ?

A.

1 2

B.1

C.

3 2

D.2

【答案】B.

【解析】如图

当直线 x ? m 经过函数 y ? 2 的图像与直线
x

? y ? 2x x 函数 y ? 2 的图像仅有一个点在可行域内, 有方程组 ? x ? y ? 3 ? 0 的交点时, ?x ? y ? 3 ? 0
得 x ? 1 ,所以 m ? 1 ,故选B. 11.【2012 高考真题山东理 13】若不等式 kx ? 4 ? 2 的解集为 x 1 ? x ? 3 ,则实数

?

?

k ? __________. 【答案】 k ? 2
【解析】由 | kx ? 4 |? 2 可得 2 ? kx ? 6 ,所以 1 ?

k k x ? 3 ,所以 ? 1 ,故 k ? 2 。 2 2

? x?0 ? 12.【2012 高考真题安徽理 11】若 x, y 满足约束条件: ? x ? 2 y ? 3 ;则 x ? y 的取值范围为 ?2 x ? y ? 3 ?
_____ .
【答案】 [?3,0] 【命题立意】本题考查线性规划知识,会求目标函数的范围。 【 解 析 】 约 束 条 件 对 应 ?ABC 边 际 及 内 的 区 域 : A( 0 , 3 B, )

3 ( 0 ,C ) , , 则 1 ) (1, 2

t ? x? y? ?, 0 ] [ 3 。

13.【2012 高考真题全国卷理 13】若 x,y 满足约束条件 _________. 【答案】 ? 1

则 z=3x-y 的最小值为

【解析 】做出做出不等式所表示的 区域如图

,由 z ? 3x ? y 得

y ? 3x ? z ,平 移直 线 y ? 3x ,由图象可知当直线经过点 C (0,1) 时,直线 y ? 3x ? z 的截
距最 大,此时 z 最小,最小值为 z ? 3x ? y ? -1. 14.【2012 高考江苏 13】 分)已知函数 f ( x) ? x2 ? ax ? b(a, ?R) 的值域为 [0 , ?) , (5 b ? 若关于 x 的不等式 f ( x) ? c 的解集为 (m , ? 6) ,则实数 c 的值为 ▲ . m 【答案】9。 【考点】函数的值域,不等式的解集。

a2 【解析】由值域为 [0 , ?) ,当 x ? ax ? b=0 时有 V? a ? 4b ? 0 ,即 b ? , ? 4
2

2

∴ f ( x) ? x 2 ? ax ? b ? x 2 ? ax ?

a2 ? a? ??x? ? 。 4 ? 2?

2

a? a a a ? ∴ f ( x) ? ? x ? ? ? c 解得 ? c ? x ? ? c , ? c ? ? x ? c ? 。 2? 2 2 2 ?

2

a a ∵不等式 f ( x) ? c 的解集为 (m , ? 6) ,∴ ( c ? ) ? (? c ? ) ? 2 c ? 6 ,解得 m 2 2

c ?9。

[来源:Z,xx,k.Com]

15. 【2012 高考江苏 14】 分) (5 已知正数 a , , 满足:5c ? 3a ≤ b ≤ 4c ? a , ln b ≥ a ? c ln c , b c c 则

b 的取值范围是 ▲ . a

7 【答案】 ? e, ? 。
【考点】可行域。 【解析】条件 5c ? 3a ≤ b ≤ 4c ? a , ln b ≥a ?c lnc 可化为: c

? a b ?3 ? ? ? 5 ? c c ?a b ? ? ?4 。 ?c c a ?b ? ? ec ?c


a b =x,y = ,则题目转化为: c c

?3 x ? y ? 5 ?x ? y ? 4 y ? 已知 x,y 满足 ? ,求 的取值范围。 x x ?y ? e ? x > 0,y > 0 ?
作出( x,y )所在平面区域(如图) 。求出 y =e x 的切 线的斜率 e ,设过切点 P ? x0,y0 ? 的切线为 y =ex ? m ? m ? 0 ? , 则

y0 ex0 ? m m ,要使它最小,须 m=0 。 = =e ? x0 x0 x0



y 的最小值在 P ? x0,y0 ? 处,为 e 。此时,点 P ? x0,y0 ? 在 y =e x 上 A, B 之间。 x

[来源:学科网 ZXXK]

? y =4 ? x ?5 y =20 ? 5 x y 当( x,y )对应点 C 时, ? ?? ? y =7 x ? =7 , x ? y =5 ? 3x ?4 y =20 ? 12 x
∴ ∴

y 的最大值在 C 处,为 7。 x
b y 7 7 的取值范围为 ? e, ? ,即 的取值范围是 ? e, ? 。 a x

16.【2012 高考真题浙江理 17】设 a ? R,若 x>0 时均有[(a-1)x-1]( x 2-ax-1)≥0,则 a =______________. 【答案】 a ? 2

www.TopSage.com

大家网

9 / 10

【解析】本题按照一般思路,则可分为一下两种情况: (A) ? (B) ?
1) 1 ? (a- x- ? 0 , 无解; 2 1 ? x -ax- ? 0

1) 1 ? (a- x- ? 0 , 无解. 2 1 ? x -ax- ? 0

因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在 x>0 的整个区间上,我们可 以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图) 我们知道:函数 y1=(a-1)x-1,y2=x 2-ax-1 都过定点 P(0,1). 考查函数 y1=(a-1)x-1:令 y=0,得 M( 考查函数 y2=x 2-ax-1:显然过点 M( 舍去 a ? ? 2 ,得答案: a ? 2 .
1 ,0),还可分析得:a>1; a ?1
2

1 a ? 1 ? ,0),代入 得:? ? 1 ? 0 ,解之得:a ? ? 2 , ? ? a ?1? a ?1 a ?1 ?

? x, y ? 0 ? 17.【2012 高考真题新课标理 14】 设 x, y 满足约 束条件: ? x ? y ? ?1 ;则 z ? x ? 2 y 的取值范围为 ? x? y ?3 ?
【答案】 [?3,3]

【解析】做出不等式所表示的区域如图
更多精品在大家!

,由 z ? x ? 2 y 得 y ?

1 1 x ? z ,平移 2 2

http://www.TopSage.com

大家网,大家的!

10 / 10

错误!未指定书签。

TopSage.com

直线 y ?

1 1 1 x ,由图象可知当直线经过点 D(3,0) 时,直线 y ? x ? z 的截距最小,此时 z 最大为 2 2 2

? x ? y ? ?1 ?x ? 1 ,解得 ? ,即 z ? x ? 2 y ? 3 ,当直线经过 B 点时,直线截距最大,此时 z 最小,由 ? ?x ? y ? 3 ?y ? 2
B(1,2) ,此时 z ? x ? 2 y ? 1 ? 4 ? ?3 ,所以 ? 3 ? z ? 3 ,即 z 的取值范围是 [?3,3] .

大家网,大家的!

http://www.topsage.com

更多精品在大家!


相关文章:
2012年高考真题汇编——理科数学:不等式
2012年高考真题汇编——理科数学:不等式 隐藏>> 2012 高考真题分类汇编:不等式 1.【2012 高考真题重庆理 2】不等式 A. ? ? x ?1 ? 0 的解集为 2x ?1...
2012年高考真题理科数学解析汇编不等式
2012年高考真题理科数学解析汇编不等式_高考_高中教育_教育专区。2012高考数学分类汇编 2012 年高考真题理科数学解析汇编不等式一、选择题 1 .( 2012 年高考(重庆...
2012年高考数学真题汇编11 不等式 文(解析版)
2012年高考数学真题汇编11 不等式 文(解析版)_高考_高中教育_教育专区。2012 高考试题分类汇编:11:不等式一、选择题 ? x ? 2 y ? 2, ? 1.【2012 高考山...
2012年高考真题汇编——理科数学:8:不等式
2012 高考真题分类汇编:不等式 1.【2012 高考真题重庆理 2】不等式 A. ? ?...若 2a-2a=ab-3b,则 a...
2012全国各省不等式高考题(含答案)
2012年高考新课标理科数学... 2012年高考全国卷(新课标版...1...2012高考试题分类汇编:不... 2页 免费 4-5不等式选讲2012高考试题... 4页...
2012年高考真题汇编——理科数学(解析版)8:不等式
2012年高考真题汇编——理科数学(解析版)8:不等式 隐藏>> 高考资源网( www.ks5u.com) ,您身边的高考专家 2012 高考真题分类汇编:不等式 1.【2012 高考真题重...
2012年高考数学真题分考点汇编:不等式
2012年高考数学真题分考点汇编:不等式_高考_高中教育_教育专区。不等式 典型例题:例 1. (2012 年广东省理 5 分)不等式 x ? 2 ? x ? 1 的解集为 【答...
2012年高考理科数学试题考点汇编不等式
数学上传文档支持以下设备:扫二维码下载 AndroidiPhoneiPad 扫描二维码下载 支持Android...2012年高考理科数学试题考点汇编不等式 隐藏>> 2012 高考真题分类汇编:不等式 ...
2012年高考真题汇编——理科数学(解析版)8:不等式
欢迎光临《中学数学信息网》 zxsx127@163.com 2012 高考真题分类汇编:不等式 1.【2012 高考真题重庆理 2】不等式 ? ? 1 2 ? ? ? ? ? 1 2 ? ? ? ...
更多相关标签: