当前位置:首页 >> 学科竞赛 >>

国际数学奥林匹克(IMO)竞赛试题(第17届)


国际数学奥林匹克(IMO)竞赛试题(第 17 届)
1. 已知 x1 >= x2 >= ... >= xn, 以及 y1 >= y2 >= ... >= yn 都是实数, 求证 若 z1 , 2 , z ..., zn 是 yi 的任意排列则有 ∑(xi-yi)2 <= ∑(xi-zi)2 上式中左右两边的求和都是 i 从 1

到 n. 2. 令 a1 < a2 < a3 < ... 是一递增正整数序列,求证对所有 i>=1,存在无穷多个 an 可以 写成 an = rai + saj 的形式,其中 r,s 是正实数且 j > i. 3. 任意三角形 ABC 的边上,向外作三角形 ABR,BCP,CAQ,使角 CBP、角 CAQ 都 是 45 度,角 BCP、角 ACQ 都是 30 度,角 ABR、角 BAR 都是 15 度.求证角 QRP 是 直角并且 QR=RP. 4. 令 A 是将 44444444 写成十进制数字时的各位数字之和,令 B 时 A 的各位数字之和, 求 B 的各位数字之和. 5. 判定并证明能否在单位圆上找到 1975 个点使得任意两点间的距离为有理数.

6. 找出所有两个变量的多项式 P(x,y)使其满足: I. II. 对某一正整数 n 及所有实数 t、x、y 有 P(tx, ty) = tnP(x, y)成立; 对所有实数 x、y、z 有 P(y + z, x) + P(z + x, y) + P(x + y, z) = 0; III. P(1, 0) = 1.


相关文章:
国际数学奥林匹克(IMO)竞赛试题(第11届)
国际数学奥林匹克(IMO)竞赛试题(第11届)_学科竞赛_高中教育_教育专区。国际数学奥林匹克(IMO)竞赛试题(第 11 届) 1. 对任意正整数 n,求证有无穷多个正整数...
国际数学奥林匹克(IMO)竞赛试题(第5届)无答案
国际数学奥林匹克(IMO)竞赛试题(第5届)无答案_学科竞赛_高中教育_教育专区。国际数学奥林匹克(IMO)竞赛试题(第 5 届) 1. 找出下列方程的所有实数根(其中 p ...
国际数学奥林匹克(IMO)竞赛试题(第25届)无答案
国际数学奥林匹克(IMO)竞赛试题(第25届)无答案_学科竞赛_高中教育_教育专区。国际数学奥林匹克(IMO)竞赛试题(第 25 届) 1. 求证 0 ≤yz + zx + xy - ...
国际数学奥林匹克(IMO)竞赛试题(第3届)无答案
国际数学奥林匹克(IMO)竞赛试题(第3届)无答案_学科竞赛_高中教育_教育专区。国际数学奥林匹克(IMO)竞赛试题(第 3 届) 1. 设 a、b 是常数,解方程组 x +...
国际数学奥林匹克(IMO)竞赛试题(第11届)无答案
国际数学奥林匹克(IMO)竞赛试题(第11届)无答案_学科竞赛_高中教育_教育专区。国际数学奥林匹克(IMO)竞赛试题(第 11 届) 1. 对任意正整数 n,求证有无穷多个...
国际数学奥林匹克(IMO)竞赛试题(第12届)
国际数学奥林匹克(IMO)竞赛试题(第 12 届) 1. M 是三角形 ABC 的边 AB 上的任何一点, r1、 2 分别是三角形 ABC、 r、 r AMC、 BMC 的内切圆的半径...
国际数学奥林匹克(IMO)竞赛试题(第23届)
国际数学奥林匹克(IMO)竞赛试题(第 23 届) 1. f(n)是定义在正整数上且取值为非负整数的函数, = 0, f(3) > 0, f(9999) = 3333, f(2) 并对所有...
国际数学奥林匹克(IMO)竞赛试题(第35届)
国际数学奥林匹克(IMO)竞赛试题(第 35 届) 1. m 和 n 都是正整数,a1,a2,...,am 是{1,2,...,n}中不同的数,只要有 ai +aj≤ n(i, j 可能...
国际数学奥林匹克(IMO)竞赛试题(第14届)无答案
国际数学奥林匹克(IMO)竞赛试题(第14届)无答案_学科竞赛_高中教育_教育专区。国际数学奥林匹克(IMO)竞赛试题(第 14 届) 1.有十个互不相同的二位数,求证必可...
国际数学奥林匹克(IMO)竞赛试题(第19届)
国际数学奥林匹克(IMO)竞赛试题(第 19 届) 1. 在正方形 ABCD 中作等边三角形 ABK、BCL、CDM、DAN,证明线段 KL、LM、 MN、NK 的四个中点以及线段 AK、BK...
更多相关标签: