当前位置:首页 >> 数学 >>

安徽省桐城中学2015-2016学年高二数学下学期第一次月考试题 理


安徽省桐城中学 2015—2016 学年度第二学期高二年级第一次月考 数学试卷(理科)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是 符合题目要求的. 1.下列求导结果正确的是( A. (1 ? x 2 )? ? 1 ? 2x C. [ln( 2 x )]? ? ) B. (cos30? )? ? ? sin30?


3 D. ( x )? ?

1 2x

3 x 2


2.已知函数 f(x)的导函数为 f′(x) ,且满足 f(x)=2xf′(e)+lnx,则 f′(e)=( A.1 B.﹣1 C.﹣e
﹣1

D.﹣e

3.已知函数 f (x) 和g (x) 在区间[a, b]上的图象如图所示, 那么下列说法正确的是 ( A.f(x)在 a 到 b 之间的平均变化率 大于 g(x)在 a 到 b 之间的平均变化率 B.f(x)在 a 到 b 之间的平均变化率小于 g(x)在 a 到 b 之间的平均变化率



C.对于任意 x0∈(a,b) ,函数 f(x)在 x=x0 处的瞬时变化率总大于函数 g(x)在 x=x0 处的瞬时 变化率 D.存在 x0∈(a,b) ,使得函数 f(x)在 x=x0 处的瞬时变化率小于函数 g(x)在 x=x0 处的瞬时变 化率 3? 1 2 ? 4.曲线 y= x -2x 在点?1,- ? 处的切线的倾斜角为( 2? 2 ? A .- 1 B .45° )

C .-45° )

5.如图是函数 y=f(x)的导函数 y=f′(x)的图象,则下列结论正确的是( A.在区间(-2,1)内 f(x)是增函数 C.在区间(4,5)内 f(x)是增函数
3 2

B.在 区间(1,3)内 f(x)是减函数 D.在 x=2 时,f(x)取极小值

6.已知函数 f(x)=ax -x +x-5 在(-∞,+∞)上既有极大值,也有 极小值,则实数 a 的取值范 围为( 1 A.a> 3 ) 1 B.a≥ 3 1 C.a< 且 a≠0 3 1 D.a≤ 且 a≠0 3

( ? 1x? 0 ) ?x ?1 ? ? 7. 函 数 f ( x) ? ? ? 的图象与 x 轴所围成的封闭图形的面积为 cos x (0 ? x ? ) ? ? 2

1

( A、



3 2
3

B、1
2

C、2

D、

1 2
).

8.若关于 x 的不等式 x -3x -9x+2≥m 对任意 x∈[-2,2]恒成立,则 m 的取值范围是( A.(-∞,7] C.(-∞,0] B.(- ∞,-20] D.[-12,7] )

9. 函数 y ? 2 x2 ? ln2 x 的的单调递增区间是 (

A. (0, )
3 2

1 2

B. (0,

2 ) 4
2

C. ( , ?? )

1 2

D. ( ? ,0) 和 (0, )

1 2

1 2

10. f ( x) ? x ? ax ? bx ? a 在 x=1 处有极值 10,则 f(2)为 A.11 18 B.18



) D.17 或

C .11 或 18

11.设 f′(x)为函数 f(x)的导函数,已知 x f′(x)+xf(x)=lnx,f(e)= ,则下列结论正 确的是( ) B.f(x)在(0,+∞)单调递减 D.f(x)在(0,+∞)上有极小值

2

A.f(x)在(0,+∞)单调递增 C.f(x)在(0,+∞)上有极大值 12 . 已 知 函 数 f ( x) ? ?

1 3 x ? mx 2 ? n(m, n, x ? R) 图 像 上 任 意 两 点 A? x1 , y1 ? 、 3


2 2 B ? x2 , y2 ? ? x1 ? x2 ? ,满足 f ( x1 ) ? f ( x2 ) ? x1 ? x2 ? x1 ? x2 ,则实数 m 的取值范围是(

A.[0,2] D. [2,??]

B. (??,0)

C.(0,2)

二.填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13.一质点按规律 s=2t 运动,则其在 t=1 时的瞬时速度为 14.求值:
3

m/s.

?

2

0

( 4 ? ( x ? 2)2 ? x)dx ?

.15.过点 O(0,0)的直线 l 与曲线 f(x)=x3-3x2+2x 相

切,则直线 l 的方程为__________________________ 16.设函数 f ( x) ? ln(x ? 1) ? 2x ? a ( a ? R ) .若存在 x0 ? [0,1]使得f ( f ( x0 )) ? x0 ,则 a 的取 值范围是 _________________

三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.

2

17. (10 分)已知函数 f ( x) ? ax( x ? 1) ? ln x 。 (1)当 a ? 1 时,求 f ( x ) 在 (1, f (1)) 处的切线方程; (2)若函数 g ( x) ? f ( x) ? ln x ? ax2 ? e x ,当 a ? ?1 时,求 g ( x) 的极值。

4 3 18.(12 分)若函数 f(x)=ax -bx+4,当 x=2 时,函数 f(x)有极值- . 3 (1)求函数的解析式; (2)若方程 f(x)=k 有 3 个不同的根,求实数 k 的取值范围.

19 (12 分)已知 f ( x) ? x ln x, g ( x) ? ? x ? ax ? 3 。
2

3

(1 )求函数 f ( x ) 在 (0, ??) 上的最小值; (2)对一切 x ? (0, ??) , 2 f ( x) ? g ( x) 恒成立,求实数 a 的取值范围;

20. (12 分)已知函数 f ( x) ? x ?

a ? (a ? 1) ln x, a ? R . x

(1)若 f ( x) 在定义域内为增函数,求 a 的值. (2)若 f ( x) 在 [1,e] 上的最小值为 ? 2 ,求 a 的值.

21. (12 分)设 f(x)=xlnx,g(x)=x ﹣1. (1)求证:当 x ? 1 时, f(x) ?

2

1 g(x) 2

(2)若当 x≥1 时,f(x)﹣mg(x)≤0 恒成立,求实数 m 的取值范围.

4

22. (12 分)已知 f ( x ) ? e ?
x

x ,其中 e 为自然对数的底数 4

(1)设 g ( x) ? xf ' ( x) (其中 f ' ( x) 为 f ( x) 的导函数) ,判断 g ( x) 在 (0,??) 上的单调性 (2)若 F ( x) ? ln x ? af ( x) ? 1 无零点,试确定 a 的范围

5

安徽省桐城中学 2015--2016 高二(下)第一次月考 数学(理)答题卷一.选择题(本大题共 12 小题,每小题 5 分,共 60 分) 题号 选项 1 D 2 C 3 D 4 D 5 C 6 C 7 A 8 B 9 C 10 B 11 B 12 A

二.填空题(本大题共 4 小题,每小题 5 分,共 20 分)

13. 6

14. 2? ? 2

15 . y ? 2 x 或_ y ? ?

1 x 4

16. [0, ln 2 ? 1]

三、解答题(本大题共 6 小题,共 70 分) 17 (本小题满分 10 分) 解: (1)当 a ? 1 , f ( x) ? x( x ? 1) ? ln x ? x2 ? x ? ln x , f (1) ? 1 ? 1 ? ln1 ? 2

1 ? 切点坐标为 (1, 2) , f '( x) ? 2 x ? 1 ? ,? k ? f '(1) ? 2 ? 1 ? 1 ? 2 。 x
根据直线的点斜式方程,切线方程为 y ? 2 ? 2( x ? 1) ,

? f ( x) 在 (1, f (1)) 处的切线方程 2 x ? y ? 0 。
(2)依题意得: g ( x) ? ax ? ax ? ln x ? ln x ? ax ? e ? ax ? e
2 2 x x

g '( x) ? a ? e x , e x ? ?a ;因为 a ? ?1? ?a ? 1
解得 x ? ln(?a) ,? f ( x) 在 (ln(?a), ??) 上单调递增,在 (0, ln(?a)) 上单调递减。

? g( x)极小值 = g(ln(?a)) ? a ln(?a) ? eln(?a) ? ?a ? a ln(?a) , g ( x) 无极大值。
18 (本小题满分 12 分) 解: (Ⅰ)f′(x)=3ax ﹣b 由题意; ,解得 ,
2

∴所求的解析式为 (Ⅱ)由(1)可得 f′(x)=x ﹣4=(x﹣2 ) (x+2) 令 f′(x)=0,得 x=2 或 x=﹣2,
2

6

∴当 x<﹣2 时,f′(x)>0,当﹣2<x<2 时,f′(x)<0,当 x>2 时,f′(x)>0 因此,当 x=﹣2 时,f(x)有极大值 当 x=2 时,f(x)有极小值 ∴函数 由图可知: 19.解: (1) f '( x) ? ln x ? 1, f '( x) ? 0, x ? , ,

的图象大致如图. .

1 e

1 1 ? f ( x) 在 ( , ??) 上单调递增, f '( x) ? 0, 0 ? x ? e e 1 1 ? f ( x) 在 (0, ) 上单调递减,? f ( x) 在 x ? 处取最小值, e e 1 1 1 1 ? f ( x) min ? f ( ) ? ln ? ? 。 e e e e 3 2 (2) 2 x ln x ? ? x ? ax ? 3 恒成立 ? a ? x ? 2 ln x ? 恒成立 x 3 记 h( x) ? x ? 2 ln x ? ( x ? 0) x

x 2 ? 2 x ? 3 ( x ? 3)(x ? 1) ? h' ( x ) ? ? x2 x2 ? x ? (0,1), h' ( x) ? 0, x ? (1,??), h' ( x) ? 0
? h( x) 在 (0,1) ?, (1,??) ?

? hmin ( x) ? h(1) ? 4 ?a ? 4
20(本小题满分 12 分) 解: (1) f ' ( x) ?

x 2 ? (a ? 1) x ? a ( x ? 1)(x ? a) ? ( x ? 0) x2 x2

又 f ( x) 在定义域内为增函数

? ?x ? 0, f ' ( x) ? 0
?a ?1
(2)由 f ' ( x) ? 0 得 x ? 1 或 x ? a

7

i )a ? 1 x ? [1, e], f ' ( x) ? 0 ? f ( x) 在 [1, e] ?

? f min ( x) ? f (1) ? 1 ? a ? ?2 ? a ? 3 (舍)
ii)1 ? a ? e x ? (1, a), f ' ( x) ? 0, x ? (a, e) f ' ( x) ? 0 ? f ( x) 在 [1, a] ?, (a, e] ?

? f min ( x) ? f (a) ? a ? 1 ? (a ? 1) ln a ? ?2 ? a ? e (舍)
iii)a ? e x ? [1, e], f ' ( x) ? 0 ? f ( x) 在 [1, e] ?
? f min ( x) ? f (e) ? e ?
综上, a ? e 21(本小题满分 12 分) 解: (1)记 h( x) ? f ( x) ?

a ? (a ? 1) ? ?2 ? a ? e e

1 g ( x)( x ? 1) 2

? h' ( x) ? ln x ? 1 ? x 1 ? h' ' ( x) ? ? 0( x ? 1) x
? h' ( x) 在 (1,??) ? ? h' ( x) ? h' (1) ? 0 ? h( x) 在 (1,??) ? ? h( x) ? h(1) ? 0 即当 x ? 1 时, f(x) ?
(2) i ) m ?

1 g(x) 2

1 2
1 g(x) ? m g( x) 2

由(1)知 x ? 1 时, f(x) ? 满足题意

ii )0 ? m ?

1 2
8

x≥1 时,f(x)﹣mg(x)≤0 恒成立等价于 x≥1 时, ln x ? m( x ? 记 F ( x) ? ln x ? m( x ? )(x ? 1) ? F ' ( x) ?

1 ) ? 0 恒成立 x

1 x

? m x2 ? x ? m x2

令 F ' ( x) ? 0 得 x1 ? 易知 x1 ? 1 ? x2 ? 0

1 ? 1 ? 4m 2 1 ? 1 ? 4m 2 , x2 ? 2m 2m

? x ? (1, x1 ), F ' ( x) ? 0 ,? x ? ( x1 ,??), F ' ( x) ? 0
? F ( x) 在 (1, x1 ) ?, ( x1 ,??) ?

? Fmax ( x) ? F ( x1 ) ? F (1) ? 0 不合题意
iii )m ? 0
x ? 1 时, f ( x) ? m g( x) ? 0 不合题意
综上, m ?

1 2

22(本小题满分 12 分)
x 解: (1) f ' ( x) ? e ?

1 1 , g ( x) ? xf ' ( x) ? x(e x ? ) 4 4 1 1 1 3 ? x ? 0, g ' ( x) ? ( x ? 1)e x ? ? e x ? ? 1 ? ? ? 0 4 4 4 4

? g ( x) 在 (0,??) ?

1 a( ? g ( x)) 1 a (2) F ' ( x) ? ? af ' ( x) ? x x
又 g (0) ? 0, g ( x) 在 (0,??) ?

? 存 在 唯 一 x0 ? (0,??) 使
x ? ( x0 ,??), F ' ( x) ? 0
? F ( x) 在 (0, x0 ) ?, ( x0 ,??) ?

F ' ( x0 ) ? 0 且 x ? (0, x0 ), F ' ( x) ? 0 ,

? Fmax ( x) ? F ( x 0 ) ? ln x0 ? af ( x0 ) ? 1 其中 a ?

1 g ( x0 )

9



x ? 0?, F ( x) ? ??

? F ( x) ? ln x ? af ( x) ? 1 无零点等价于 F ( x0 ) ? 0
记 G ( x) ? ln x ?

f ( x) ?1 g ( x)

? G ' ( x) ?

f ( x) g ' ( x) g 2 ( x)

易知 x ? 0 时, f ( x) ? 0 ,? G' ( x) ? 0

? G ( x) 在 (0,??) ? ,且 G(1) ? 0

? 0 ? x0 ? 1
1 1 1 ? g ( x0 ) ? 0 ? ? e ? a a 4 1 ?a ? 1 e? 4


10


相关文章:
安徽省桐城中学2015-2016学年高二数学下学期第一次月考试题 理
安徽省桐城中学2015-2016学年高二数学下学期第一次月考试题 _数学_高中教育_教育专区。安徽省桐城中学 2015—2016 学年度第二学期高二年级第一次月考 数学试卷...
安徽省桐城中学2015-2016学年高二数学下学期第三次月考试题 理
安徽省桐城中学2015-2016学年高二数学下学期第次月考试题 _数学_高中教育_教育专区。桐城中学 2015-2016 年度高二第二学期第三次月考 数学试题(理科) 注意:...
河北省大名县第一中学2015-2016学年高二数学下学期第一次月考试题 理
河北省大名县第一中学 2015-2016 学年高二数学下学期第一次月考试题 一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是...
高二数学-2015-2016学年高二下学期第一次月考数学试卷(文)
2015/2016 学年度学期 高二年级第一次月考试卷 数学(文科)试题总分: 160 分 时间: 120 分钟 命题人: 陈乃胜 一、填空题:本大题共 14 小题,每小题 5 ...
河北省邢台市2015-2016学年高二数学下学期第一次月考试题 理(扫描版)
河北省邢台市2015-2016学年高二数学下学期第一次月考试题 (扫描版)_数学_...1下载券 河北省邢台市第一中学20... 暂无评价 5页 1下载券©...
安徽省芜湖一中2015-2016学年高二数学下学期期中试题 理
安徽省芜湖一中2015-2016学年高二数学下学期期中试题 _数学_高中教育_教育专区。芜湖一中 2015—2016 学年二学期期中考试 高二数学(理科)试卷一、选择题:本大...
安徽省宣城市郎溪县郎溪中学2015-2016学年高二数学下学期第一次月考试题 文
安徽省宣城市郎溪县郎溪中学2015-2016学年高二数学下学期第一次月考试题 文_数学_高中教育_教育专区。安徽省郎溪中学 2015-2016 学年高二第二学期第一次月考 ...
安徽省舒城晓天中学2015-2016学年高二数学下学期第一次月考试题 文
安徽省舒城晓天中学 2015-2016 学年高二数学下学期第一次月考试 题文一 、选择题:(本大题共 12 小题,每小题 5 分, 共 60 分) 1.设函数 f(x)在 x0...
河南省南阳市第一中学2015-2016学年高二数学下学期第一次月考试题 理
河南省南阳市第一中学2015-2016学年高二数学下学期第一次月考试题 _数学_高中教育_教育专区。南阳一中 2016 春期高二第一次月考 试题第Ⅰ卷一、选择题(...
更多相关标签:
安徽省桐城中学 | 安徽省桐城市天使装潢 | 安徽省桐城市 | 安徽省桐城市邮编 | 安徽省桐城市双港镇 | 安徽省桐城市实验中学 | 安徽省桐城市鲁王山 | 安徽省桐城市地图 |