当前位置:首页 >> 高一数学 >>

黄冈市2016年春高一期末考试数学(文)试题


黄冈市 2016 年春季高一期末数学试卷(文)
(满分:150;时间:120 分钟 ) 姓名__________ 班级___________ 分数_________ 一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.已知集合 M={y|y=cosx,x∈R},N={x∈Z| ≤0},则 M∩N 为( )

A.

B.

C.

D.

11.设两条直线的方程分别为 x+y+a=0,x+y+b=0,已知 a、b 是关于 x 的方程 x2+x﹣2=0 的两个实 数根,则这两条直线之间的距离为( ) A.2 B. C.2 D.

A.? B.{0,1} C.{﹣1,1} D. (﹣1,1] 2.已知 a,b,c∈R,那么下列命题中正确的是( ) A.若 a>b,则 ac2>bc2 C.若 a3>b3 且 ab<0,则 B.若 ,则 a>b

12.如图所示将若干个点摆成三角形图案,每条边(色括两个端点)有 n(n>1,n∈N*)个点, 相应的图案中总的点数记为 an,则 + + +…+ =( )

D.若 a2>b2 且 ab>0,则 ) A. B. C. D.

3.已知点(﹣3,﹣1)和点(b,﹣4)均在直线 3x﹣2y﹣a=0 上,则 ab 的值为( A. B.﹣35 C.35 D.﹣

4.下列命题错误的是( ) A.如果平面 α⊥平面 β,那么平面 α 内所有直线都垂直于平面 β B.如果平面 α⊥平面 β,那么平面 α 内一定存在直线平行于平面 β C.如果平面 α⊥平面 γ,平面 β⊥平面 γ,α∩β=l,那么 l⊥平面 γ D.如果平面 α 不垂直于平面 β,那么平面 α 内一定不存在直线垂直于平面 β 5.等比数列{an}的前 n 项和为 Sn,已知 S4=a2+a3+9a1,a5=32,则 a1=( ) A.﹣ B. C.2 D.﹣2

二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.一个几何体的三视图如图所示,若其正视图、侧视图的轮廓 为 1 的菱形,俯视图是边长为 1 的正方形,则该几何体的体积为

都是边长 .

14.已知 0<x<1,则函数 y= +

的最小值为



6.某企业生产甲、乙两种产品均需用 A,B 两种原料,已知生产 1 吨甲乙每种产品所需原料及每 天原料的可用限额如表所示,若设每天生产甲、乙产品各 x,y 吨,则可列线性约束条件为( ) 甲 乙 原料限额 A(吨) 3 2 12 B(吨) 1 2 8

15.已知实数 x,y 满足

,则 ω=

的取值范围是



16.在数列{an}中,a1=2,an+1=an+ln(1+ ) ,则 an= 三、解答题(共 6 小题,满分 70 分)



A.

B.

C.

D.

17. (本小题满分 10 分)已知关于 x 的不等式 ax2+5x+c>0 的解集为{x| (1)求 a,c 的值; (2)解不关于 x 的不等式 ax2+(ac+2)x+2c≥0.

}

7.在△ABC 中,若 tanAtanB>1,则△ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 8.函数 y=asinx﹣bcosx 的一条对称轴为 x=

D.无法确定 )

,则直线 l:ax﹣by+c=0 的倾斜角为(

A.45° B.60° C.120° D.135° 9.已知点 A(2,3) B 3 2 kx y , (﹣ ,﹣ ) ,若直线 ﹣ +1﹣k=0 与线段 AB 相交,则 k 的取值范围是 ( A. ) B. C. (﹣∞,1]∪[2,+∞) D.[1,2] 18. (本小题满分 12 分)已知两条直线 l1:ax﹣by+4=0,l2: (a﹣1)x+y+b=0,求满足下列条件的 a,b 值. (Ⅰ)l1⊥l2 且 l1 过点(﹣3,﹣1) ; (Ⅱ)l1∥l2 且原点到这两直线的距离相等.

10.已知直四棱柱 ABCD﹣A1B1C1D1 中,底面 ABCD 为正方形,AA1=2AB,E 为 AA1 的中点, 则异面直线 BE 与 CD1 所成角的余弦值为( )

19. (本小题满分 12 分)设数列{an}满足 a1+3a2+32a3+…+3n﹣1an= ,n∈N*. (1)求数列{an}的通项; (2)设 ,求数列{bn}的前 n 项和 Sn. 22. (本小题满分 12 分)对于函数 f(x) ,若存在 x0∈R 使得 f(x0)=x0 成立,则称 x0 为 f(x)的 2 不动点.已知函数 f(x)=ax +(b+1)x+b﹣1(a≠0) . 1 a=1 b=3 f x ( )若 , ,求函数 ( )的不动点; (2)若对任意实数 b,函数 f(x)恒有两个相异的不动点,求 a 的取值范围; (3)在(2)的条件下,若 y=f(x)图象上 A、B 两点的横坐标是函数 f(x)的不动点,且 A、B 两点关于直线 对称,求 b 的最小值.

20. (本小题满分 12 分)“城市呼唤绿化”,发展园林绿化事业是促进国家经济发展和城市建设事业 的重要组成部分, 某城市响应城市绿化的号召, 计划建一如图所示的三角形 ABC 形状的主题公园, 其中一边利用现成的围墙 BC,长度为 100 米,另外两边 AB,AC 使用某种新型材料围成,已知 ∠BAC=120°,AB=x,AC=y(x,y 单位均为米) . (1)求 x,y 满足的关系式(指出 x,y 的取值范围) ; (2)在保证围成的是三角形公园的情况下,如何设计能使公 园的面积最大?最大值是多少?

21. (本小题满分 12 分)如图,在底面是正方形的四棱锥 P﹣ABCD 中,PA⊥面 ABCD,BD 交 AC 于点 E,F 是 PC 中点,G 为 AC 上一点. (Ⅰ)求证:BD⊥FG; (Ⅱ)确定点 G 在线段 AC 上的位置,使 FG∥平面 PBD,并说明理由.

17. 【解答】解: (1)由题意知,不等式对应的方程 ax2+5x+c=0 的两个实数根为 和 ,

黄冈市 2016 年高一期末数学(文科)参考答案与试题解析
一、选择题 1-6 B C C A CA 7-12 A D B C D C

由根与系数的关系,得

,解得 a=﹣6,c=﹣1; (2)由 a=﹣6,c=﹣1 知不等式 ax2+(ac+2)x+2c≥0 可化为﹣6x2+8x﹣2≥0, + +…+ = =1 .故选 C. 即 3x2﹣4x+1≤0,解得 ≤x≤1,所以不等式的解集为[ ,1].

12. 【解答】解:每个边有 n 个点,把每个边的点数相加得 3n,这样角上的点数被重复计算了一 次,故第 n 个图形的点数为 3n﹣3,即 an=3n﹣3, 令 Sn= +…+ + ﹣ = + ,∴ +…+ + + = +…+

二、填空题

13.

.14.

9 .15 [5,6] .16. 2+lnn .

18. 【解答】解(Ⅰ)∵l1⊥l2,∴a(a﹣1)+(﹣b)×1=0…(1) 又 l1 过点(﹣3,﹣1) ,则﹣3a+b+4=0…(2) 联立(1) (2)可得,a=2,b=2. (Ⅱ)依题意有, ,且 ,

15.【解答】解:ω= 设 k=

=

=4+2×

, 解得 a=2,b=﹣2 或 . …

,则 k 的几何意义是区域内的点到定点 D(3,2)的斜率, 19. 【解答】解: (1)∵a1+3a2+32a3+…+3n﹣1an= ,① ∴当 n≥2 时,a1+3a2+32a3+…+3n﹣2an﹣1= ①﹣②,得 3n﹣1an= ,所以 .②

作出不等式组对应的平面区域如图: 由图象得 AD 的斜率最大,BD 的斜率最小, 其中 A(0, ) ,B(1,0) ,

(n≥2) , .

此时 kAD= 时 kBD=

= ,此时 ω 最小为 ω=4

=4+1=5,

在①中,令 n=1,得 (2)∵ ,

也满足上式.∴

=1,此时 ω 最大为 ω=4+2×1=6,

∴bn=n?3n.

故 5≤ω≤6,故答案为:[5,6].

16.【解答】解:a1=2+ln1,a2=2+ln2, 由此猜想 an=2+lnn.用数学归纳法证明: ①当 n=1 时,a1=2+ln1,成立. ②假设当 n=k 时等式成立,即 ak=2+lnk, 则当 n=k+1 时, 由①②知,an=2+lnn. 故答案为:2+lnn. 三、解答题(共 6 小题,满分 70 分) =2+lnk+ln





∴Sn=3+2×32+3×33+…+n?3n.③ ∴3Sn=32+2×33+3×34+…+n?3n+1.④ ④﹣③,得 2Sn=n?3n+1﹣(3+32+33+…+3n) , 即 2Sn=n?3n+1﹣ .∴ .

=2+ln(k+1) .成立.

20. 【解答】解: (1)在△ABC 中,由余弦定理,得 AB2+AC2﹣2AB?ACcosA=BC2, 所以 x2+y2﹣2xycos120°=30000, 即 x2+y2+xy=30000,… 又因为 x>0,y>0,所以 0<x<100 ,0<y<100 .… (2)由(1)x2+y2+xy=30000 得 30000≥2xy+xy=3xy,所以 xy≤1000,

要使所设计能使公园的面积最大,即 S= S= ,

最大,所以

设 A(x1,x1) ,B(x2,x2) ,由(2)知, 所以 AB 的中点
2

, ,

当且仅当 x=y=100 时,上式不等式成立.… 故当 AB,AC 边长均为 100 米时,所设计能使公园的面积最大,最大为 2500 21. 【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系. 【分析】 (Ⅰ)要证:BD⊥FG,只需证明 BD⊥平面 PAC,即可;

易知 kAB=1,∴k=﹣1, 把 M 点代入得 由(2)得 0<a<1, 所以 ,则 ,

米 .

(Ⅱ)当 G 为 EC 中点,即 AG= AC 时,要证明 FG∥平面 PBD,FG∥PE 即可. 【解答】证明: (Ⅰ)∵PA⊥面 ABCD,四边形 ABCD 是正方形,其对角线 BD,AC 交于点 E, ∴PA⊥BD,AC⊥BD, ∴BD⊥平面 PAC, ∵FG? 平面 PAC, ∴BD⊥FG

因为 当且仅当

≥2

=2

,所以 b≥﹣ …

=



(Ⅱ) :当 G 为 EC 中点,即 AG= AC 时, FG∥平面 PBD, 理由如下: 连接 PE,由 F 为 PC 中点,G 为 EC 中点,知 FG∥PE, 而 FG?平面 PBD,PE? 平面 PBD, 故 FG∥平面 PBD.

22. 【考点】函数与方程的综合运用. 【分析】 (1)把 a=1,b=3 代入 f(x)=x2+4x+2,化简 f(x)=x 求出 x 的值,根据题意即可求出函 数 f(x)的不动点; (2)化简 f(x)=x 后,由不动点的定义和判别式的符号,列出不等式求出 a 的取值范围; (3)由题意设 A(x1,x1) ,B(x2,x2) ,根据对称求出 k 以及 A、B 的中点 M 的坐标,把 M 的 坐标代入直线 求出 b,利用基本不等式求出 b 的最小值.

【解答】解: (1)若 a=1,b=3,f(x)=x2+4x+2, 代入 f(x)=x 化简得 x2+3x+2=0,解得 x=﹣2、﹣1, 则 f(x)的不动点为﹣2,﹣1….. (2)由题意知,函数 f(x)恒有两个相异的不动点, 所以方程 f(x)=x 即 ax2+bx+b﹣1=0(a≠0)恒有两个不等实根, 则△=b2﹣4a(b﹣1)>0,即 b2﹣4ab+4a>0 对任意实数 b 恒成立, 即△=(﹣4a)2﹣4×4a<0,解得 0<a<1,所以 0<a<1… (3)因为 A、B 两点关于直线 所以 AB 与直线垂直,且中点 M 在直线上, 对称,


赞助商链接
相关文章:
黄冈市2015-2016学年高一下期末数学试卷(文)含答案解析
(x)的不动点, 且 A、B 两点关于直线 对称,求 b 的最小值. 2015-2016 学年湖北省黄冈市高一 () 期末数学试卷 (文科)参考答案与试题解析 一、选择题(...
...省黄冈市黄冈中学高一下学期期中考试数学(理)试题
2015-2016学年湖北省黄冈市黄冈中学高一学期期中考试数学()试题_高一数学_数学_高中教育_教育专区。湖北省黄冈中学 2016 年春季期中联考高一数学试题(理)考试...
2016-2017学年湖北省黄冈市高一上学期期末考试数学试题...
2016-2017学年湖北省黄冈市高一上学期期末考试数学试题和答案_高一数学_数学_高中教育_教育专区。2016-2017学年湖北省黄冈市高一上学期期末考试数学试题和答案 ...
湖北省黄冈市2015-2016学年高一(下)期末数学试卷(理科)...
(共 19 页) 2015-2016 学年湖北省黄冈市高一 () 期末数学试卷 (理科)参考答案与试题解析 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在...
黄冈市2016-2017学年度上学期高一期末考试数学(含答案)...
黄冈市2016-2017学年度上学期高一期末考试数学(含答案)(2017.01) - 黄冈市 2016 年秋季高一年级期末考试 数学试题 一、选择题:本大题共 12 个小题,每小题 ...
2017年秋黄冈市高一期末考试数学试题(含答案)
2017年秋黄冈市高一期末考试数学试题(含答案) - 黄冈市 2017 年秋高一上学期期末考试 数学试题 (考试时间:12 0 分钟 试卷满分:150 分) 注 意事项: 1.本...
湖北省黄冈市2018年春季高一年级期末考试数学试卷
湖北省黄冈市2018年春季高一年级期末考试数学试卷 - 湖北省黄冈市 2018 年春季高一年级期末考试数学试卷(理科) 字号: 默认 大中小 本试卷共 4 页,三大题 22 小...
湖北省黄冈市2016-2017学年高一下学期期末考试文科数学...
湖北省黄冈市2016-2017学年高一下学期期末考试文科数学试卷 - 2016-2017 学年湖北省黄冈市高一下学期期末考试文科数学 一、选择题:共 12 题 1.直线 的斜率为 ...
2016-2017学年湖北省黄冈市高一下学期期末考试数学(理)...
2016-2017学年湖北省黄冈市高一下学期期末考试数学()试题 - 2017 年春季高一数学期末测试参考答案(理科) 一、选择题 1-6 13. 2 DCBDBA 14. 3 4...
湖北省黄冈市2016-2017学年高一下学期期末考试文科数学...
湖北省黄冈市2016-2017学年高一下学期期末考试文科数学试题(word版含答案) - 黄冈市 2016-2017 学年度高一下学期期末考试 数学 (文科) 一、选择题:本题共 12 ...
更多相关标签: