当前位置:首页 >> 数学 >>

【数学】§2.2 超几何分布 课件(北师大版选修2-3)


第二章 概率 §2.2 超几何分布

复习引入
1. 随机变量

如果随机试验的结果可以用一个变量来表示,(或
随着试验结果变化而变化的变量),那么这样的变量 叫做随机变量. 随机变量常用希腊字母X、Y、ξ、η等表示。 2、离散型随机变量

所有取值可以一一列出的随机变量,称为离 散型随机变量。

3.离散型随机变量的分布列 设随机变量 ? 的所有可能的取值为 x1 , x2 , x3 , ???, xi , ???, xn

? 的每一个取值 x i (i ? 1, 2, ???, n)的概率为
则称表格
?
x1
p1

P(? ? xi ) ? pi ,
xi
pi

x2
p2

· · · · · ·

· · · · · ·

P

为随机变量 ? 的概率分布,简称? 的分布列. 注: 1、分布列的构成 ⑴列出了随机变量 ? 的所有取值. ⑵求出了 ? 的每一个取值的概率. 2、分布列的性质 ⑴ pi ? 0, i ? 1,2,? ? ? ⑵ p ? p ? ??? ?1 1 2 有时为了表达简单,也用等式 P(? ? xi ) ? pi , i ? 1, 2,3,..., n
表示

?

的分布列

4.会求离散型随机变量的概率分布列:
(1)找出随机变量ξ的所有可能的取值 x (i ? 1, 2, ); i

(2)求出各取值的概率 P(? ? xi ) ? pi ;
(3)列成表格。 明确随机变量的具体取值 所对应的概率事件

问题分析

问题:已知在10件产品中有4件次品,现从这10件产品 中任取3件,用X表示取得的次品数,试写出X的 分布列. 分析 首先,从这10件产品中任取3件,共有C103种取法, 每一种取法都是等可能的.

已知在10件产品中有4件次品,故X的可能取值为 0,1,2,3.

其中,“X=0”表示“任取的3件产品中不含次品”, 这意味着,从4件次品中取出0件,再从10-4件正品中取 出3-0件,由分步乘法计数原理可知,共有C40C10-43-0种 取法,故事件“X=0”的概率为

0 3? 0 C4 C10? 4 20 P ( X ? 0) ? ? ? 0.1667 3 C10 120

类似地,“X=1”表示“任取的3件产品中恰有1件次 品”,这意味着,取出1件次品和3-1件正品,共有 C41C10-43-1种取法。故 1 3?1 C4 C10?4 60 P ( X ? 1) ? ? ? 0.5 3 C10 120
同理可得,
2 3? 2 C4 C10? 4 36 P ( X ? 2) ? ? ? 0.3 3 C10 120 3 3? 3 C4 C10? 4 4 P ( X ? 3) ? ? ? 0.0333. 3 C10 120

事实上,“X=k”(k=0,1,2,3)表示“取出的3件产 品中恰有k件次品”,这意味着,从4件次品中取出k 件,再从10-4件正品中取出3-k件,共有C4kC10-43-k种 取法,故X 的分布列为
k 3? k C4 C10?4 P( X ? k ) ? (k ? 0,1, 2, 3) 3 C10

学习了对问题的详细分析,你会有新的认识, 能发现新的结论吗?

抽象概括
超几何分布: 一般地,设有 N 件产品,其中有 M 件次品.从 中任取 n 件产品,用 X 表示取出的 n 件产品中次品 的件数,那么 k n? k CM CN ?M P( X ? k ) ? (k ? 0,1, 2, , m ) 其中 n CN

m ? min? M , n? ,且 n ≤ N , M ≤ N , n, M , N ? N * .

如果一个随机变量 X 的分布列由上式确定,则称 X 服从参数为 N , M , n 的超几何分布. 注:⑴超几何分布的模型是不放回抽样 ⑵超几何分布中的参数是 M,N,n

例 1.在含有 5 件次品的 100 件产品中,任取 3 件, 求取到的次品数 X 的分布列.
解:∵ X 的可能取值为 0,1,2,3. k 3? k C5 C95 又∵ P ( X ? k ) ? (k ? 0,1, 2, 3) 3 C100 ∴随机变量 X 的分布列是 X 0 1 2 3 0 3 1 2 2 1 3 0 P C5 C5 C95 C 95 C 5 C 95 C 5 C 95 3 3 3 3 C100 C100 C100 C100
求分布列一定要说 明 k 的取值范围!

例 2.在某年级的联欢会上设计了一个摸奖游戏, 在一 个口袋中装有 10 个红球和 20 个白球,这些球除颜色 外完全相同.游戏者一次从中摸出 5 个球.至少摸到 3 个红球就中奖,求中奖的概率.(精确到 0.001)
解:设摸出红球的个数为 X, 则 X 服从超几何分 布,其中 N ? 30, M ? 10, n ? 5 ,于是由超几何分布 模型得中奖的概率 P ( X ≥ 3) ? P ( X ? 3) ? P ( X ? 4) ? P ( X ? 5) 3 2 4 1 5 0 C10 C 20 C10 C 20 C10 C 20 ? ? ? ≈0.191 5 5 5 C 30 C 30 C 30
解决此类问题的一般过程: 1、判断随机事件的分布是不是超几何分布 2、利用超几何分布的概率求解公式求出分布列

练习: 1.从装有 3 个红球,2 个白球的袋中随机取出 2 个球, 设其中有 ? 个红球,求 ? 的分布列.

解:设摸出红球的个数为 X,则 X 服从超 几何分布,其中 N ? 5, M ? 3, n ? 2 , ∴ X 的可能取值为 0,1,2. k 2? k C3 C2 ∴ P( X ? k ) ? ( k ? 0,1, 2) 2 C5 ∴随机变量 X 的分布列是 X 0 1 2 P 1 3 3 10 5 10

练习2.

小结
一般地,设有总数为N件的两类物品,其中一类有M 件,从所有物品中任取n件(n≤N),这n件中所含这类 物品件数X是一个离散型随机变量,它取值为k时的概率 为:

C C P (X ? k) ? C

k M

n?k N ?M n N

(0≤k≤l , l为n和M中较小的一个).
我们称离散型随机变量X的这种形式的概率分布为超几 何分布,也称X服从参数为N,M,n的超几何分布.


赞助商链接
相关文章:
...第二章概率2超几何分布知识导航北师大版选修2-3资料...
高中数学章概率2超几何分布知识导航北师大版选修2-3资料 - §2 超几何分布 自主整理 一般地,设有 N 件产品,其中有 M(M≤N)件次品.从中任取 n(n≤...
北师大版数学【选修2-3】练习:2.2 超几何分布(含答案)
北师大版数学【选修2-3】练习:2.2 超几何分布(含答案)_数学_高中教育_教育...2.2超几何分布》课件(... 45页 5下载券 2.2 超几何分布 课件(北.....
高中数学选修2-3 北师大版 超几何分布 学案2
高中数学选修2-3 北师大版 超几何分布 学案2_高二数学_数学_高中教育_教育专区。高中数学选修2-3 北师大版 学案 § 2 超几何分布 自主整理 一般地,设有 N ...
2.2 超几何分布 学案(高中数学选修2-3 北师大版)
2.2 超几何分布 学案(高中数学选修2-3 北师大版)_高二数学_数学_高中教育_教育专区。高中数学选修2-3 北师大版 学案 2.2 超几何分布 一、学习目标: 1、...
高中数学北师大版选修2-3课时作业:2.2 超几何分布 Word...
高中数学北师大版选修2-3课时作业:2.2 超几何分布 Word版含解析_数学_高中教育_教育专区。选修 2-3 第二章 §2 课时作业 40 一、选择题 1. 设袋中有 ...
高中数学选修2-3 北师大版 2.2 超几何分布 教案
高中数学选修2-3 北师大版 2.2 超几何分布 教案_高二数学_数学_高中教育_教育专区。高中数学选修二 北师大版 教案 2.2 超几何分布 教学目标: 1、理解理解超...
...数学第2章概率2.2超几何分布学案北师大版选修2-3资...
搜试试 3 悬赏文档 全部 DOC PPT TXT PDF XLS ...超几何分布学案北师大版选修2-3资料_数学_高中教育...【精彩点拨】 着眼点:(1)超几何分布的概念;(2)...
北师大版高中数学选修2-3同步精练:2超几何分布 Word版...
北师大版高中数学选修2-3同步精练:2超几何分布 Word版含解析_数学_高中教育_教育专区。1.一批产品共 50 件,次品率为 4%,从中任取 2 件,则含有 1 件次品...
高中数学选修2-3 北师大版 超几何分布 课时检测(含答案)
高中数学选修2-3 北师大版 超几何分布 课时检测(含答案)_高二数学_数学_高中教育_教育专区。高中数学选修2-3 北师大版 课时作业 课后巩固作业(含答案) ...
...第二章概率2超几何分布自我小测北师大版选修2-3资料...
高中数学章概率2超几何分布自我小测北师大版选修2-3资料_数学_高中教育_教育专区。高中数学章 概率 2 超几何分布自我小测 北师大版选修 2-3 1....
更多相关标签: