当前位置:首页 >> 高三数学 >>

常用逻辑用语总复习绝对经典


简单的逻辑联结词、全称量词与存在量词
1.考查逻辑联结词“或”、“且”、“非”的含义,能用“或”、“且”、“非” 表述相关的命题. 2.考查对全称量词与存在量词意义的理解,叙述简单的数学内容,并能正确地对 含有一个量词的命题进行否定. 【复习指导】 复习时应紧扣概念,理清相似概念间的异同点,准确把握逻辑联结词的含义和用 法,熟练掌握对含有量词命题的否定的方法.本讲常与其他知识结合,在知识的交 汇处命题,试题难度中档偏 下.

基础梳理 1.简单的逻辑联结词 (1)命题中的“且”“或”“非”叫做逻辑联结词. (2)简单复合命题的真值表: p 真 假 真 假 2.全称量词与存在量词 (1)常见的全称量词有: “任意一个”“一切”“每一个”“任给”“所有的”等. (2) 常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某 个”“有的”等. (3)全称量词用符号“?”表示;存在量词用符号“?”表示. 3.全称命题与特称命题 (1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题. 4.命题的否定 q 真 真 假 假 p∧q 真 假 假 假 p∨q 真 真 真 假 ? p 假 真 假 真

(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或 q 的否定为:非 p 且非 q;p 且 q 的否定为:非 p 或非 q.

一个关系 逻辑联结词与集合的关系 “或、且、非”三个逻辑联结词,对应着集合运算中的 “并、交、补”,因此, 常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成 的命题问题. 两类否定 1.含有一个量词的命题的否定 (1)全称命题的否定是特称命题 全称命题 p:?x∈M,p(x),它的否定? p:?x0∈M,? p(x0). (2)特称命题的否定是全称命题 特称命题 p:?x0∈M,p(x0),它的否定? p:?x∈M,? p(x). 2.复合命题的否定 (1)綈(p∧q)?(? p)∨(? q); (2)綈(p∨q)?(? p)∧(? q). 三条规律 (1)对于“p∧q”命题:一假则假; (2)对“p∨q”命题:一真则真; (3)对“? p”命题:与“p”命题真假相反. 双基自测 1.(人教 A 版教材习题改编)已知命题 p:?x∈R,sin x≤1,则( A.? p:?x0∈R,sin x0≥1 C.? p:?x0∈R,sin x0>1 B.? p:?x∈R,sin x≥1 D.? p:?x∈R,sin x>1 ).

解析 命题 p 是全称命题,全称命题的否定是特称命题. 答案 C 2.(2011· 北京)若 p 是真命题,q 是假命题,则( A.p∧q 是真命题 C.? p 是真命题 ).

B.p∨q 是假命题 D.? q 是真命题

解析

本题考查命题和逻辑联结词的基础知识,意在考查考生对逻辑联结词的理

解运用能力.只有? q 是真命题. 答案 D 3.命题 p:若 a,b∈R,则|a|+|b|>1 是|a+b|>1 的充分而不必要条件.命题 q: 函数 y= |x-1|-2 的定义域是(-∞,-1]∪[3,+∞)则( A.“p 或 q”为假 C.p 真 q 假 答案 D 4.设 p、q 是两个命题,则复合命题“p∨q 为真,p∧q 为假”的充要条件是 ( A.p、q 中至少有一个为真 C.p、q 中有且只有一个为真 答案 C 5 . (2010· 安 徽 ) 命 题 “ 对 任 何 x ∈ R , |x - 2| + |x - 4|>3” 的 否 定 是 ______________________. 答案 存在 x0∈R,使|x0-2|+|x0-4|≤3 B.p、q 中至少有一个为假 D.p 为真、q 为假 ). B.“p 且 q”为真 ).

D.p 假 q 真

考向一

含有逻辑联结词命题真假的判断

【例 1】?(2010· 新课标全国)已知命题 p1:函数 y=2x-2-x 在 R 上为增函数,p2: 函数 y=2x+2-x 在 R 上为减函数,则在命题 q1:p1∨p2,q2:p1∧p2,q3:(? p1)∨ p2 和 q4:p1∧(? p2)中,真命题是( A.q1,q3 C.q1,q4 ). B.q2,q3 D.q2,q4

[审题视点] 根据复合函数的单调性判断 p1,p2 的真假. 解析 可判断 p1 为真,p2 为假;则 q1 为真,q2 为假,q3 为假,q4 为真. 答案 C “p∨q”、“p∧q”、“? q”形式命题真假的判断步骤:(1)确定命题的 构成形式;(2)判断其中命题 p、q 的真假;(3)确定“p∨q”、“p∧q”、“? q”形 式命题的真假.

5 【训练 1】 已知命题 p:?x0∈R,使 sin x0= 2 ;命题 q:?x∈R,都有 x2+x+ 1>0.给出下列结论 ①命题“p∧q”是真命题; ②命题“? p∨? q”是假命题; ③命题“? p∨q”是真命题; ④命题“p∨? q”是假命题. 其中正确的是( A.②③ C.③④ ). B.②④ D.①②③

解析 命题 p 是假命题,命题 q 是真命题,故③④正确. 答案 C 考向二 全称命题与特称命题

【例 2】?写出下列命题的否定,并判断其真假. 1 (1)p:?x∈R,x2-x+4≥0; (2)q:所有的正方形都是矩形; (3)r:?x0∈R,x2 0+2x0+2≤0; (4)s:至少有一个实数 x0,使 x3 0+1=0. [审题视点] 改变量词,否定结论,写出命题的否定;判断命题的真假. 1 2 解 (1)? p:?x0∈R,x0 -x0+4<0,假命题. (2)? q:至少存在一个正方形不是矩形,假命题. (3)綈 r:?x∈R,x2+2x+2>0,真命题. (4)綈 s:?x∈R,x3+1≠0,假命题. 全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题 和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全 称量词;二是要否定结论.而一般命题的否定只需直接否定结论即可. 【训练 2】 写出下列命题的否定,并判断真假. (1)p:?x∈R,x 不是 3x-5=0 的根; (2)q:有些合数是偶数; (3)r:?x0∈R,|x0-1|>0. 解 (1)? p:?x0∈R,x0 是 3x-5=0 的根,真命题.

(2)? q:每一个合数都不是偶数,假命题. (3)綈 r:?x∈R,|x-1|≤0,假命题. 考向三 根据命题的真假,求参数的取值范围

【例 3】?(2012· 浙大附中月考)已知命题 p:方程 x2+mx+1=0 有两个不等的负实 数根;命题 q:方程 4x2+4(m-2)x+1=0 无实数根.若“p 或 q”为真命题,“p 且 q”为假命题,求 m 的取值范围. [审题视点] 先解不等式将命题 p 与命题 q 具体化, 然后根据“p 或 q”与“p 且 q” 的条件可以知道命题 p 与命题 q 一真一假,从而求出 m 的取值范围.
2 ?Δ1=m -4>0, 解 由 p 得:? 则 m>2. ?-m<0,

由 q 得:Δ2=16(m-2)2-16=16(m2-4m+3)<0, 则 1<m<3. 又∵“p 或 q”为真,“p 且 q”为假,∴p 与 q 一真一假. ?m>2, ①当 p 真 q 假时,? 解得 m≥3; ?m≤1或m≥3, ?m≤2, ②当 p 假 q 真时,? 解得 1<m≤2. ?1<m<3, ∴m 的取值范围为 m≥3 或 1<m≤2. 含有逻辑联结词的命题要先确定构成命题的(一个或两个)命题的真假, 求 出此时参数成立的条件,再求出含逻辑联结词的命题成立的条件. 【训练 3】 已知 a>0,设命题 p:函数 y=ax 在 R 上单调递增;命题 q:不等式 ax2-ax+1>0 对?x∈R 恒成立.若 p 且 q 为假,p 或 q 为真,求 a 的取值范围. 解 ∵函数 y=ax 在 R 上单调递增,∴p:a>1. 不等式 ax2-ax+1>0 对?x∈R 恒成立, ∴a>0 且 a2-4a<0,解得 0<a<4,∴q:0<a<4. ∵“p∧q”为假,“p∨q”为真, ∴p、q 中必有一真一假. ?a>1, ①当 p 真 q 假时,? 得 a≥4. ?a≥4,

?0<a≤1, ②当 p 假 q 真时,? 得 0<a≤1. ?0<a<4, 故 a 的取值范围为(0,1]∪[4,+ ∞).

规范解答 1——借助常用逻辑用语求解参数范围问题 【问题研究】 利用常用逻辑用语求解参数的取值范围主要涉及两类问题:一是利 用一些含有逻辑联结词命题的真假来确定参数的取值范围;二是利用充要条件来 确定参数的取值范围.求解时,一定要注意取值区间端点值的检验,处理不当容易 出现漏解或增解的现象., 【解决方案】 解决此类题目首先是合理转化条件、运用有关性质、定理等得到参 数的方程或不等式,然后通过解方程或不等式求得所求问题. 【示例】? (本题满分 12 分)已知 c>0,且 c≠1,设 p:函数 y=cx 在 R 上单调递 ?1 ? 减; q: 函数 f(x)=x2-2cx+1 在?2,+∞?上为增函数, 若“p∧q”为假, “p∨q” ? ? 为真,求实数 c 的取值范围. (1)p,q 真时,分别求出相应的 c 的范围;(2)用补集的思想求出? p,? q 分别对应的 c 的范围;(3)根据“p∧q”为假、“p∨q”为真,确定 p,q 的真假. [解答示范] ∵函数 y=cx 在 R 上单调递减,

∴0<c<1.(2 分) 即 p:0<c<1.∵c>0 且 c≠1,∴? p:c>1.(3 分) ?1 ? 又∵f(x)=x2-2cx+1 在?2,+∞?上为增函数, ? ? 1 1 ∴c≤ .即 q:0<c≤ . 2 2 1 ∵c>0 且 c≠1,∴? q:c>2且 c≠1.(6 分)

又∵“p∨q”为真,“p∧q”为假,∴p 真 q 假或 p 假 q 真.(7 分)
? ? ? ? ? ? ? ? ?1 ? 1 ①当 p 真,q 假时,{c|0<c<1}∩?c?c>2且c≠1 ?=?c?2<c<1 ?;(9 分) ? ? ? ? ? ? ? ? ? ?

? ? ? ? 1 ? ②当 p 假,q 真时,{c|c>1}∩?c?0<c≤2 ?=?.(11 分) ? ? ? ? ? ? ?1 ? ? ? 综上所述,实数 c 的取值范围是?c?2 <c<1?.(12 分) ? ? ? ? ?

解决此类问题的关键是首先准确地把每个条件所对应的参数的取值范围 求出来,然后转化为集合交、并、补的基本运算. 【试一试】 设 p:方程 x2+2mx+1=0 有两个不相等的正根;q:方程 x2+2(m- 2)x-3m+10=0 无实根.求使 p∨q 为真,p∧q 为假的实数 m 的取值范围. [尝试解答]
2 ?Δ1=4m -4>0, 由? 得 m<-1. ?x1+x2=-2m>0,

∴p:m<-1; 由 Δ2=4(m-2)2-4(-3m+10)<0, 知-2<m<3,∴q:-2<m<3. 由 p∨q 为真,p∧q 为假可知,命题 p,q 一真一假, ?m<-1, 当 p 真 q 假时,? 此时 m≤-2; ?m≥3或m≤-2, ?m≥-1, 当 p 假 q 真时,? 此时-1≤m<3. ?-2<m<3, ∴m 的取值范围是{m|m≤-2,或-1≤m<3}.

高考资源网

w。w-w*k&s%5¥u 高考资源网 w。w-w*k&s%5¥u


赞助商链接
相关文章:
更多相关标签: