当前位置:首页 >> 数学 >>

双曲线的标准方程


复习:

定义

| |MF1|-|MF2| | =2a(0<2a<|F1F2|)
y
M
M F2

y

图象
F1

o

F2

x
F1

x

方程
焦点坐标
a.b.c 的关 系

x y ? 2 ?1 2 a b
( ±c, 0)
2 2 2

2

2

y x ? 2 ?1 2 a b
(0, ± c)

2

2

c ? a ? b (a ? 0, b ? 0)

双曲线及标准方程(二)
----双曲线定义的运用

例1 已知F1(-6,0),F2(6,0),求与它们的距离差绝对值是6的点的 轨迹方程. 变式1 已知B(-6,0),C(6,0)是△ABC的两个顶点,且sinB-sinC=0.5sinA, 求顶点A的轨迹方程. |AC|-|AB|=6<|BC| 小结:求双曲线方程的方法:

1、待定系数法

为避免讨论,可设双曲线的标准方程为

mx2-ny2=1(mn>0)
2、定义法:先定义判断轨迹,再写方程。

如何想到用双曲线定义解题?

例2:求下列动圆圆心的轨迹方程: 2 2 ? 1)与圆C:x ? 2? ? y ? 2 内切,且过点A(2,0);

x 2 ? ( y ? 1) 2 和圆C2 : ?1 2)与圆C1 :

x 2 ? ( y ? 1) 2 ? 4 都外切;

x2 y 2 ? ? 1 的两个焦点,点P在双曲 例3 F1,F2是双曲线 64 36 线上且 PF1 ? PF2 ? 0 求 S ?PF F
1 2

问题1 能否求出|PF1|与|PF2|?

问题2: ∠F1PF2=600? x2 y2 练习1:椭圆 ? ? 1与双曲线x2-15y2=15在第一象限内的一个 25 9 交点为P,求|PF1|(其中F1是双曲线的左焦点). x2 y 2 ? ? 1 上一点,F ,F 是双曲 练习2(作业5)点P是双曲线 1 2 16 20 线的两个焦点,且|PF1|=9, 则|PF2|=
x2 y 2 练习3:F1,F2是双曲线 ? 的两个焦点,点P在双曲线的 ?1 9 16

???? ???? ? 左分支上且 | PF1 | ? | PF2 |? 32 ,求 ?F1 PF2

小结 一 从知识点上

二 从数学思想方法上


赞助商链接
相关文章:
双曲线及其标准方程教学反思
双曲线及其标准方程教学反思我参加了学校举行的教学比武,课题是《双曲线及其标准方程》,上课的对象是高二 年级 372 班的学生。上完这节课后我进行了反思,具体内容...
苏教版高一数学双曲线及其标准方程教案
苏教版高一数学双曲线及其标准方程教案 - 双曲线及其标准方程 教学目标: 1、理解双曲线的定义及焦点、焦距的意义。 2、掌握双曲线的标准方程及其特点;会求简单的...
双曲线及其标准方程练习题
【解析】 由双曲线的标准方程得 a=3,b=4. 于是 c= a2+b2=5. (1)若点 P 在双曲线的左支上, 则|PF2|-|PF1|=2a=6,∴|PF2|=6+|PF1|=16; ...
双曲线的定义及其标准方程 导学及练习 含答案
双曲线的定义及其标准方程 导学及练习 含答案_数学_高中教育_教育专区。课题 双曲线及其标准方程 【学本研读】 【学习目标】 1.通过类比椭圆的定义理解并掌握双...
专题复习双曲线的标准方程及其性质
高三专题复习双曲线的标准方程及其性质教案适用学科 适用区域 知识点 教学目标 教学重点 教学难点高中数学 全国 双曲线的标准方程及其性质。 理解并掌握双曲线的标准...
...经过点(2,3)的双曲线的标准方程为( )_答案_百度高考
单选题 数学 双曲线的标准方程及简单性质 焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) Ax2-=1 B Cy2-=1 D 正确答案及...
双曲线的标准方程
双曲线的标准方程 - §2.3 双曲线的标准方程 一、基本知识点 ①双曲线的定义: ②双曲线的标准方程: 焦点在 x 轴 ___;焦点在 y...
12.5 双曲线的标准方程
12.5 双曲线的标准方程_数学_高中教育_教育专区。12.5 双曲线的标准方程 【学习重点】 1. 双曲线的定义:平面上有两个定点 F1、F2,动点 P 满足||PF1|-|...
双曲线及其标准方程
双曲线及其标准方程 - 2.2 2.2.1 双曲线 双曲线及其标准方程 【课标要求】 1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.会利用双曲线的定义和...
2.3.1双曲线及其标准方程_教案(人教A版选修2-1)
2.3.1 双曲线及其标准方程●三维目标 1.知识与技能 理解双曲线的概念,掌握双曲线的定义,会用双曲线的定义解决问题;了解双曲线标准 方程的推导过程及化简无理...
更多相关标签: